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Topological phase transitions in condensed matter have been 
studied extensively over the past decade. A key manifestation 
of these transitions is the emergence, at the frontier between 

materials exhibiting distinct topological phases, of localized states 
that are unaffected by disorder. One example of this topological 
protection is provided by chiral edge states at the surface of topo-
logical insulators that allow unidirectional transport immune to 
backscattering1.

Initially proposed by Haldane and Raghu2, the idea of extending 
topological arguments to the realm of photonics has recently trig-
gered considerable efforts to engineer optical devices that are unaf-
fected by local perturbations and fabrication defects3. For example, 
topological properties have been used to create polarization-depen-
dent unidirectional waveguides4, optical delay lines with enhanced 
transport properties5, backscattering-immune chiral edge states6–9 
and protected bound states related to parity-time symmetry10,11.

The emergence of edge states at the boundary between materials 
with distinct topological invariants provides an efficient way to cre-
ate localized photonic modes whose existence is protected by topol-
ogy9. Lasing in these kinds of modes would then be robust against 
fabrication defects, local deformations caused by temperature or 
other unstable ambient conditions and long-term degradation, all of 
which would otherwise result in the modification of the local optical 
potential12. The main difficulty that has prevented the observation 
of lasing in topological modes is the need to implement topological 
lattices in media exhibiting optical gain. In this sense, microcavity 
polaritons, mixed quasiparticules formed from the strong coupling 
between cavity photons and quantum well excitons13, provide a 
unique platform: they allow for single-mode lasing in single micro-
pillars14, low-threshold lasing in planar structures15,16—even at room 
temperature17,18—and for the engineering of topological properties 
in lattices of resonators19,20.

In this Article we report lasing in topological edge states of  
a one-dimensional lattice of coupled semiconductor micropillars. 
This lattice implements an orbital version of the Su–Schrieffer–
Heeger (SSH) model by coupling l =​ 1 polariton modes confined in 

a zigzag chain of micropillars. Under non-resonant optical pump-
ing, we show that gain occurs in the topological states localized at 
the edges of the chain. Then, taking advantage of polariton interac-
tions, we demonstrate the topological robustness of the lasing action 
against optically induced lattice deformations. These results open 
the way to the realization of topological lasers of arbitrary geometry, 
in which the lasing mode would be determined by the boundary 
between topologically distinct regions, regardless of its shape.

Orbital SSH model
To engineer topological edge states in a one-dimensional lattice, we 
implement an orbital version of the SSH model. The SSH model 
describes a one-dimensional lattice with two sites per unit cell and 
different intracell (t) and intercell (t′​) hopping amplitudes. Within 
the tight-binding approximation, such a model is captured by a 
Hamiltonian with chiral symmetry (Supplementary Section 1):
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possible dimerizations t >​ t′​ and t <​ t′​. The different topology of 
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which corresponds to the Zak phase divided by π​.
Although the value of   associated with either dimerization 

depends on the definition of the unit cell, in finite-size chains the 
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choice is unambiguous because t is defined by the hopping ampli-
tude between the first and second sites of the chain. Under this defi-
nition, the t >​ t′​ and t <​ t′​ dimerizations exhibit respectively strong 
and weak coupling between the edge sites and the rest of the chain 
(depicted in Fig.  1a,d) and correspond to the trivial (  =​ 0) and 
non-trivial (  =​ 1) topological phases21. Band structures calculated 
for chains of 20 sites exhibiting   =​ 0 and   =​ 1 are presented in 
Fig. 1b and e, respectively. The most notable difference is the exis-
tence in the latter case of two states at the centre of the energy gap 
corresponding to topological states localized at each end of the 
chain. The distribution of the wavefunction over the first six sites, 
for the eigenstate indicated by the filled circle, is presented in the 
inset of Fig. 1e. Its envelope (dashed line) decays as λn, where n is the 
unit cell number counted from the edge and λ =​ t/t′​.

To implement the SSH Hamiltonian, we consider the collective 
photon modes of a one-dimensional lattice of coupled polariton 
micropillars. The photonic modes of a single micropillar are con-
fined in the three dimensions of space, leading to discrete energy 
levels: the ground state s exhibits a cylindrical symmetry along the 
growth axis, and the first excited states px,y present two degener-
ate antisymmetric orbitals orthogonal to each other (Fig. 1h). The 
orbital version of the SSH model considered in this work relies 
on the coupling of these p orbitals in a one-dimensional lattice of 
micropillars arranged in a zigzag configuration (Fig. 1g).

In zigzag chains, px and py orbitals are respectively oriented 
along the diagonal and antidiagonal axes (Fig. 1c,f) and the hop-
ping amplitude between consecutive micropillars strongly depends 
on the orientation of the axis linking these pillars. The coupling is 
typically an order of magnitude stronger for orbitals oriented along 
the hopping direction than for orbitals oriented perpendicular to 
the hopping22. We define these different hopping strengths as longi-
tudinal (tl) and transverse (tt), respectively. Note that px and py form 
independent subspaces, as the 90° angles between diagonal and 
antidiagonal links of the chain prevent the coupling between adja-
cent orthogonal orbitals. Consequently, if we consider the subspace 
of px modes (Fig.  1c), photons are subject to an alternating hop-
ping strength as we move along the chain. This corresponds exactly 
to the SSH model described in Hamiltonian (1), where the intra- 
and intercell hopping strength are respectively tl and tt. The large  
hopping anisotropy (tl ≫​ tt) leads to the opening of a significant 

energy gap, as depicted in Fig.  1b. This subspace exhibits strong 
coupling (tl) between the first two (and last two) pillars and does 
not present edge states; on the other hand, the py subspace (Fig. 1e,f) 
starts and ends with the weak coupling tt and contains a topological 
edge state at each end of the chain. Similar twofold subspaces have 
been studied using the polarization-dependent hopping of s modes 
in zigzag chains of photonic resonators23,24.

Imaging orbital states in the linear regime
To implement this orbital SSH model, we etched zigzag chains of 
coupled micropillars from a planar microcavity containing 12 GaAs 
quantum wells sandwiched between two Ga0.05Al0.95As/Ga0.8Al0.2As 
Bragg mirrors with 32 (top) and 40 (bottom) pairs (see Methods 
and ref. 25 for further details). We can probe the orbital states by 
exciting the system nonresonantly with a continuous-wave single-
mode laser focused on an elliptical spot of 2 μ​m width and 50 μ​m 
length (full-width at half-maximum, FWHM) that covers 25 unit 
cells of the lattice (upper part of Fig. 2a). The photoluminescence 
spectra present an energy splitting between linear polarizations 
oriented along and perpendicular to the main axis of the chain26. 
For each of these two polarizations the system presents identical 
characteristics. We select the emission linearly polarized parallel 
to the long axis of the chain (similar results were obtained in the 
orthogonal polarization). All measurements presented in this work 
were performed at 4 K.

Figure 2a shows the photoluminescent intensity as a function of 
emission energy and momentum (directly proportional to the angle 
of emission) for low-power excitation (200 μ​W). It reveals three 
families of energy bands. The lowest band (S-band) arises from the 
coupling of s-mode polaritons. Due to their cylindrical symmetry, 
the hopping amplitude between these modes is completely isotro-
pic (t =​ t′​) and no energy gap is observed. At higher energies, we 
observe two sets of bands (P-bands) formed from the coupling of 
p modes. They are separated by an energy gap of 1.7 meV due to 
the orbital hopping anisotropy tl ≫​ tt. At even higher energies, addi-
tional bands arising from the coupling of d modes can be seen.

When moving the elliptical spot over the edge of the chain 
(Fig. 2b), we observe the emergence of a discrete state in the middle 
of the P-bands energy gap (indicated by blue circles), as expected for 
the topological edge states associated to the py subspace. Figure 2d dis-
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Fig. 1 | Tight-binding calculations of the orbital SSH Hamiltonian. a,d, Schematic representations of the two dimerizations in the SSH model. The unit cell 
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distribution of the wavefunction (solid line) and of the envelope function (dashed line) over the first six sites of the lattice for the gap state indicated by 
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plays the real-space emission at the energy of this edge mode, attesting 
its strong localization at the end of the chain. An identical edge state 
(not shown here) is observed at the opposite end of the chain, as it 
also terminates with a weakly bound py mode. In contrast, the S- and 
P-bands exhibit emission over the whole excited area (Fig. 2c,e,f).

The gap-state wavefunction exhibits three features that unambig-
uously demonstrate its topological nature. First, we can see from the 
geometry of this edge state that it is formed from orbitals belonging 
to the topologically non-trivial py subspace. Secondly, we observe 
that this state is strongly localized in the last pillar: the intensity in 
the second unit cell is an order of magnitude weaker than in the 
first. This can be understood from the low ratio tt/tl, which sets the 
penetration depth of the topological edge state. From the measured 
size of the gap and amplitude of the bands, we estimate tt/tl to be 
0.15, which is consistent with the observed localization in the out-
ermost pillar. Finally, we observe at the energies of the upper and 
lower P-bands (Fig. 2c and e) that the wavefunction in the edge pil-
lar only exhibits orbital modes belonging to the trivial subspace px. 
This is consistent with tight-binding calculations that show that the 
bulk states vanish at the edge pillars in the topologically non-trivial 
py subspace (Supplementary Section 2).

Lasing in the topological edge state
One interesting feature of polariton micropillars in the strong cou-
pling regime is the ability to trigger lasing in excited states, such as 
the topological edge states described above. This is possible thanks 
to the driven-dissipative nature of cavity polaritons: the steady-state 
lasing is determined by the interplay of pumping intensity, polariton 
relaxation and emission lifetime27–29. Both the relaxation rate and 

the lifetime are strongly influenced by the photon–exciton detun-
ing30, that is, the energy difference between the bare photon and 
exciton modes that couple to form polaritons.

To achieve polariton lasing in the edge states of our orbital SSH 
chain, we select an exciton–photon detuning of −​9.4 meV (see 
Methods), which favours relaxation of polaritons in the P-band 
states. Figure 3a presents the spatially integrated photolumines-
cence intensity at the energy of the edge state as a function of exci-
tation power. A nonlinear increase in the intensity is observed at a 
threshold power of Pth =​ 32 mW, indicating the triggering of lasing 
in the topological edge state. Simultaneously, the linewidth of the 
emission collapses, evidencing the increase of temporal coherence 
characteristic of the lasing regime (blue circles in Fig. 3b). Energy-
resolved real-space images (Fig. 3d) show that for P =​ 1.5Pth, the 
emission from the edge state completely overcomes that of the 
bulk bands (Supplementary Section 3). The three observed spots 
correspond to lobes of py orbitals in the first and third pillars. In 
the inset of Fig. 3d we see that the localization of the edge state is 
well preserved in the lasing regime.

Note that while interactions between polaritons in the lasing 
mode are negligible, these polaritons interact repulsively with a 
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Fig. 3 | Emission in the lasing regime. a,b, Integrated intensity (a) and 
blueshift (b, black squares) and linewidth (b, blue circles) of the emission 
from the topological edge state as a function of excitation power. The lasing 
threshold is indicated by the dashed red line. Excitation is provided by an 
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in Fig. 2b. Inset in a: zoom-in of the threshold region on a linear-scale plot. 
c,d, Normalized photoluminescent intensity as a function of emission 
energy E and longitudinal position along the chain for an excitation 
power below (c) and above (d) the lasing threshold, corresponding to 
data points indicated by blue filled squares in a. The orbital bandgap is 
indicated by horizontal dashed lines. Inset in d: real-space image of the 
photoluminescence at the energy of the edge state (the position of the 
micropillars is indicated by blue circles and the dashed line shows the 
position at which the energy space cut in d is taken).
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highly populated exciton reservoir injected by the excitation laser 
and located at the bare exciton energy14,31. As the excitation power 
is increased, these interactions rigidly shift to higher energies the 
whole band structure under the excitation spot (Fig. 3c,d). A sum-
mary of the blueshift of the topological edge state is reported in 
Fig. 3b for all excitation powers.

The fact that the chain lases preferentially in the edge state 
rather than in the bulk P-bands states can be explained by the 
localized character of the former. Indeed, polaritons in band 
states can propagate away from the excitation spot, reducing their  
lifetime and precluding lasing in these states in favour of the con-
fined edge state.

Robustness of the topological lasing
We now investigate the robustness of the topological lasing mode 
against local deformations of the lattice. The SSH Hamiltonian 
(equation (1)) presents a chiral symmetry, that is, it anticommutes 
with the σz Pauli matrix. The main consequence of this is that the 
topological modes appear in the middle of the gap. Because this 
symmetry is preserved when considering disorder in the hop-
ping strengths (t, t′​), the energy and localization of the topological 
modes are immune to this type of disorder (Supplementary Section 
1). Therefore, the kind of local perturbations to which this mode 
is most sensitive are changes of on-site energies, which break the 
chiral symmetry, especially in the first lattice site, because the strong 
localization of the wavefunction (Fig.  2d) mitigates the effect of 
energy perturbations in other sites.

To evaluate theoretically the effect of such an energy perturba-
tion in the first pillar, we add an on-site energy term †U a a1 1 1 in the 
Hamiltonian presented in equation (1) (Fig. 4a). By diagonalizing 
this perturbed Hamiltonian for a chain of 20 pillars, we can evalu-
ate the evolution of the energy and wavefunction of the topological 

edge mode in the py subspace as a function of U1 (we used tl =​ 1 meV 
and tt =​ 0.15 meV, which reproduce the experimentally observed 
P-bands and gap). The main effect of the perturbation U1 is to mod-
ify the energy of the edge mode in the gap, as depicted in Fig. 4b. 
Remarkably, its spatial localization is hardly affected: even for a per-
turbation energy U1 =​ 0.8 meV, for which the edge state is almost 
resonant with the upper P-band, the wavefunction is strongly local-
ized over the first pillar (Fig. 4d). This is further evidenced by the 
red line in Fig.  4f showing a high probability density of the edge 
state on the first pillar when varying U1 from 0 up to 0.85 meV, at 
which point the edge state merges with the bulk band.

To experimentally test the robustness of lasing in the edge state 
against perturbations of the energy of the edge pillar, we use the 
interactions between polaritons and the exciton reservoir. The res-
ervoir is populated by a non-resonant excitation and lies at the bare 
exciton energy, 11 meV above the lasing mode. Excitons in this reser-
voir interact repulsively with low-energy polaritons, inducing their 
blueshift with a magnitude controlled by the excitation power14,31. 
The inset of Fig. 4g shows the energy of the edge-state emission as 
a function of excitation power when using a small pump spot of 
3.5 μ​m (FWHM) diameter localized on the first pillar. The injected 
exciton reservoir continuously increases the local energy of the first 
pillar, resulting in a blueshift of the lasing mode. In agreement with 
the simulations, the localization length is immune to the perturba-
tion, as we observe that the emission remains highly confined in 
the first pillar over the whole power dependence (Fig. 4e, squares in 
Fig. 4f). One of the consequences of the robustness of the confine-
ment is that the power density threshold for lasing remains the same 
for both the extended and localized excitation spots (~30 W cm–2; 
see Supplementary Section 4 for the detailed lasing characteristics 
of the latter scheme). This behaviour is clear evidence of the robust-
ness of the topological mode to local perturbations.
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Fig. 4 | SSH Hamiltonian with broken chiral symmetry. a, Schematic representation of the distribution of on-site energies considered for the theoretical 
investigation of a localized perturbation. b,c, Calculated energies of topological (Topo in the py subspace) and non-topological (Tamm1,2 in px) edge 
states of the locally perturbed SSH Hamiltonian, as a function of the on-site energy of the first pillar U1. Grey areas indicate positions of the upper and 
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e, Spatial distribution of the photoluminescence at the energies of Topo, Tamm1 and Tamm2 for an excitation localized over the edge pillar, with a power 
of P =​ 3Pth =​ 10 mW. The colour scale is identical to that used in Fig. 2. f, Calculated evolution of the localization (defined as the wavefunction squared 
amplitude at the first pillar) of the topological (Topo, red line) and non-topological (Tamm1,2, blue lines) edge states as a function of perturbation energy 
U1. Black squares present the measured relative intensities of the photoluminescence from Topo at the position of the first pillar as a function of its spectral 
blueshift. The position of the upper P-band is indicated by the grey area. g, Photoluminescence spectrum for the same excitation conditions as in e. Inset: 
evolution of the measured blueshift of the topological edge state as a function of excitation power.
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In contrast, the topologically trivial px subspace presents a very 
different behaviour. Simulations of the perturbed Hamiltonian for 
the trivial dimerization show that the energy shift of the first pillar 
results in the emergence of two localized modes (labelled Tamm1,2 
in Fig.  4c) with energies in the central gap and above the upper 
P-band, respectively. They appear for U1 ≠​ 0 and correspond to non-
topological Tamm modes, which have been extensively discussed 
in the context of surface states induced by symmetry-breaking 
perturbations32–34 (Supplementary Section 5). In contrast to the 
topological edge state, their wavefunction extends over a few pil-
lars (Fig. 4d) and their distribution strongly varies with the value 
of U1. This behaviour is visible in Fig.  4f, (blue lines), showing a 
low calculated weight of their wavefunction on the edge micropillar. 
Experimentally, they appear in the zigzag chain as a weak emission 
(peaks on both sides of the topological state in Fig. 4g). Their spatial 
distribution only contains px components and extends significantly 
further than the topological edge mode, as shown in Fig. 4e.

Note that despite the fact that the localized reservoir induces  
the emergence of Tamm modes in the px subspace of the zigzag 
chain, lasing takes place dominantly in the topological py edge 
mode over the explored power range. This is a consequence of 
the stronger localization of the topological mode, which overlaps  
more efficiently with the small pump spot than the Tamm modes 
and thus presents a lower lasing threshold. A fundamental differ-
ence between the topological and Tamm modes in the SSH chain 
is that the former appears as a single state in the gap, while the  
latter appear in pairs for U1 ≠​ 0. In a lattice containing only the 
trivial dimerization, the Tamm states would then be prone to  
multimode effects34.

Perspectives
The observation of lasing in a topologically protected edge state 
presented here provides a direct demonstration of robust light 
trapping in topological structures. Furthermore, by comparing the 
localization of topologically trivial and non-trivial modes, we have 
highlighted the immunity of the latter against local perturbations. 
These results open the way to lasing in modes with more complex 
geometries, for instance in kink-modes localized at the domain 
wall between chains with different windings23. The most exciting 
perspective of this work is to extend the results to two-dimensional 
lattices where we envision, in systems with broken time-reversal 
symmetry, one-dimensional topological lasers with arbitrary geom-
etries35 and channels allowing backscattering-immune transport of 
coherent light36,37. In addition, polariton interactions employed in 
the present work demonstrate the suitability of cavity polaritons for 
exploring nonlinear phenomena in topological photonics38.

Methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online ver-
sion of this paper.
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Methods
Sample description. The zigzag chain of coupled micropillars was etched out of 
a planar semiconductor cavity with high quality factor (Q ~ 72,000) consisting of 
a Ga0.05Al0.95As λ/2 layer embedded between two Ga0.05Al0.95As/Ga0.2Al0.8As Bragg 
mirrors formed from 28 (40) pairs in the top (bottom) mirror. Three sets of four 
GaAs quantum wells of 7 nm width were grown at the three central maxima of the 
electromagnetic field in the cavity, resulting in strong photon–exciton coupling, 
exhibiting a 15 meV Rabi splitting. After the epitaxy, the cavity was processed by 
electron-beam lithography and dry etching to form a zigzag chain of overlapping 
cylindrical micropillars. The diameter of the pillars (3 μ​m) overcomes the centre-
to-centre distance (2.4 μ​m), allowing for the hopping of polaritons39. The distance 
between consecutive pillars was constant and the orientation of the axis linking 
pillars alternated between +​45° and −​45° with respect to the length of the chain; 
these orientations were defined by axes x  and y , respectively (Fig. 1h).

An exciton photon detuning of δ =​ −​9.4 meV was chosen to favour lasing 
in P-bands. This detuning is defined as δ =​ Ec(0) −​ EX(0), where Ec(k) and EX(k) 
describe, respectively, the energy dispersion of S-mode cavity photons and 
quantum well excitons as a function of their in-plane momentum k.

Experimental technique. Non-resonant photoluminescence measurements  
were realized with a single-mode continuous-wave (c.w.) laser at 754 nm. 
The elongated spot was engineered using a cylindrical lens. The emission 
was collected through a microscope objective and imaged on the entrance slit 
of a spectrometer coupled to a charge-coupled device (CCD) camera with a 
spectral resolution of ~30 μ​eV. Real- and momentum-space photoluminescence 
images were realized by imaging the sample surface and the Fourier plane of 
the objective, respectively. A λ/2 waveplate and a polarizer were used to select 
emission polarized either along or across the long axis of the chains. The sample 
was cooled to T =​ 4 K. Schematic diagrams of the experimental set-up are 
provided in Supplementary Section 6.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon request.
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