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This Supplemental Material presents a derivation of the Fabry-Perot based geometrical model for
the momentum-space and real-space properties of generalized edge states which is discussed in the
main letter. We also discuss in the last section the occurrence of topologically trivial modes in our
polaritonic quasicrystals.

FABRY-PEROT MODEL OF THE TOPOLOGICAL
EDGE STATES

The effective Fabry-Perot model derived here is for a
true 1D system, and is given in the language of the scat-
tering theory, as originally proposed in Ref. [35]. The ba-
sic idea is to regard the interface between the Fibonacci
sequences

#   »
FN (φ) and

#   »
FN (φ) as a virtual Fabry-Perot cav-

ity, and correspondingly consider the chains
#   »

FN (φ) and
#   »
FN (φ) as mirrors. In this perspective, the generalized
edge states localized at the interface between the two Fi-
bonacci chains are interpreted as Fabry-Perot resonances
(see Fig. 5).
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Figure 5. Appearance of gap states in the Fibonacci based
structure

#   »
FN

#   »
FN with N = 55. (a) Density of states spectrum

DOS(k) with interface states appearing in the gaps (here at
normalized wavevectors k = 0.39 and k = 0.61). (b) Spatial

arrangement of the structure
#   »

FN
#   »
FN indicated by yellow and

magenta bars (corresponding to letters A and B), with a rep-
resentation of the spatial profile of the gap state at k = 0.39.

Qualitatively speaking, the Fibonacci chains
#   »

FN (φ) or
#   »
FN (φ) which have a gapped spectrum are mirrors for spe-
cific frequencies, due to the high reflectance values at the
spectral gaps. These mirrors are not standard, since they
provide a frequency-dependent phase shift upon reflection
due to multiple reflections. This phase shift, as we will
show now, allows to treat an interface between two such
structures as a virtual (not geometric) cavity length.

The standard Fabry-Perot resonance condition for a

cavity of length L, given by

2L/λm = m, m∈Z, (1)

({λm} being a discrete set of resonant wavelengths), is
a basic constructive interference condition. Therefore, it
may always be written in terms of the winding of a phase:
the cavity phase θcav, representing the total round-trip
phase inside the cavity and defined by

θcav (k, L) ≡ 4πL

λ (k)
, (2)

where λ(k) = 2π/k is the wavelength. This gives a reso-
nance condition equivalent to Eq. (1), namely

θcav(km) = 2πm , m∈Z. (3)

Here we follow the very same argument, but in the re-
verse order. We begin with the structure

#   »
FN

#   »
FN , which

is a cavity of zero (geometrical) length. The cavity phase
is however non-zero, as

#   »
FN and

#   »
FN both yield a non-zero

phase upon reflection. If we define the reflected phase shift
for the left boundary of

#   »
FN as

#»
θ left (k), then the cavity

phase for
#   »

FN
#   »
FN is 2

#»
θ left (k). Now, similarly to Eq. (2),

a virtual cavity length is defined as

L (k, θcav) ≡ λ(k)

4π
θcav, (4)

with resonant interface states occurring at gap frequencies
satisfying the Fabry-Perot condition

2L(km)/λ(km)=m, m∈Z. (5)

The model then predicts that for every value of λ(km)
lying within a spectral gap, a new interface state will exist.

This reasoning is utilized in Eqs. (2) and (3) of the
main letter directly through θcav, to define the topolog-
ical winding number of the generalized edge state when
the phason φ is scanned. In that case, the scanning of
φ monotonically drives the cavity phase (at gap frequen-
cies) such that the resonant states monotonically change
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Figure 6. Different boundary conditions for the Fibonacci
chain. (a) and (c): The Fibonacci chain

#   »
FN with N = 55

bounded from the right (a) by a metallic mirror (orange line),
or (c) by a continuum with refractive index smaller than that
of the chain (blue line). The presence of a node or antinode of
the gap states at the boundary is here rigidly imposed by the
boundary conditions. (b) The unfolded structure

#   »
FN

#   »
FN , based

on the same structure, hosts generalized edge states which can
possess either a node or an antinode at the interface (dotted
line).

(a)

(b)

(c)

[t]

Figure 7. Real space profile of selected gap states for the struc-
tures depicted in Fig. 6: (a) The

#   »
FN chain with metallic re-

flective boundary, (b) the unfolded structure
#   »

FN
#   »
FN and (c)

the
#   »

FN chain with a refractive-index mismatch boundary.

frequency with φ. This reasoning fully supports the ex-
perimental observation of the topological winding of gen-
eralized edge states as a function of φ in momentum space,
as evidenced in Fig. 3a,b of the letter. We now describe
a Fabry-Perot property in real space that helps to fur-
ther clarify the interplay between the topological and the
Fabry-Perot properties of the generalized edge states.

The structure
#   »

FN
#   »
FN is described in the main letter as

a host for generalized edge states, in contrast to previ-
ous studies considering the interface with the vacuum. To
clarify this, we consider the

#   »
FN chain bounded from the

right by a perfect mirror. Waves traveling through the
structure and towards the mirror plane are reflected back
into the chain, experiencing the quasiperiodic modulation

in the reverse order (
#   »
FN ). An equivalent version of this

setup consists in removing the mirror and unfolding the
chain with respect to the mirror plane, resulting in the
structure considered in the main letter. The equivalence
between these two boundary conditions is however not
total. In particular, the structure

#   »
FN

#   »
FN may host inter-

face states which are both spatially symmetric and anti-
symmetric with respect to the interface, namely with a
node or an anti-node at the interface, as seen in Fig. 6b.
In contrast to that, a single

#   »
FN chain bounded by a per-

fect mirror can host only one type of states: with a node
on the mirror in the case of a metallic mirror, as shown in
Fig. 6a, or with an antinode in the case of a mismatched
mirror (continuum with refractive index smaller than that
of the chain), as shown in Fig. 6c.

The fact that the generalized-edge scheme allows all
possible interface states yields an additional degree of free-
dom to probe the topological content of the states. Indeed,
topological information may be extracted from the real
space properties of the edge states through the parity of
the Fabry-Perot integer, m in Eq. (5). In the usual Fabry-
Perot picture for phase-conserving perfect mirrors, odd
and even values of m alternate between anti-symmetric
and symmetric states with respect to the mid-cavity co-
ordinate (with a node and an antinode at mid-cavity) re-
spectively. This result is also true for our Fabry-Perot
cavity with a φ dependent virtual length. This leads to
two possible predictions.

Firstly, for a given value of φ, edge states residing in the
various gaps have different spatial symmetries completely
predictable by the Fabry-Perot model through the parity
of m. For instance, Fig. 7 shows that modes with m = 2
(red) are symmetric with respect to the interface, while
modes with m = 3 (blue) are antisymmetric. Again, we
here see that the general-edge scheme (7b) hosts the union
of all edge states of the metallic and index-mismatched
boundary conditions (7a,c) taken together.

Secondly, for a given gap, generalized edge states tra-
verse the gaps as a function of φ due to a monotonic
change in the cavity phase. This means that when an
edge state merges with one band-edge and a new state
bifurcates from the other band-edge, then the parity of m
flips and so does the spatial symmetry of the edge state.
This is the theoretical argument supporting the experi-
mental observation reported in Fig. 4 of the main letter.
These features demonstrate that the use of generalized
edges yields an additional degree of freedom (the sym-
metry index) that can be used to directly measure the
topological invariants of the quasicrystal.

TOPOLOGICALLY TRIVIAL MODES OF THE
POLARITONIC QUASICRYSTALS

In this section we show that our polaritonic structures
also hosts topologically trivial modes, that can be clearly
distinguished from the topological modes described above.
An example is given in Fig. 2a,b of the main letter.
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Among the states that are localized at the interface be-
tween the

#   »
FN and

#   »
FN sequences, one of them (at energy

∼ 1596.5 meV) lies below the bulk band structure and is
thus topologically trivial.
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Figure 8. (a) Measured energy of the interface states (for the
structure considered in Figs. 2,3,4 of the main letter) as a
function of the phason φ. The topologically trivial mode is
indicated with black circles. E0 denotes the energy of the low-
est bulk mode, and the solid lines indicate the gap boundaries.
(b) Calculation of the whole energy spectrum from the 2D
Schrödinger equation, as a function of φ.

This mode only appears for a particular quadrant of φ
(between π/2 and π), for which the sequence of letters
at the interface is AAAA. Since in our samples, the let-
ter A corresponds to a lower potential value, this AAAA
sequence forms a spatially extended potential well, and
the mode that is seen is a bound mode of this well. To
verify that this mode is topologically trivial, we can mon-
itor its spectral evolution as a function of φ, both in the
experiment and the simulation (2D Schrödinger calcula-
tion) as shown in Fig. 8. We observe that the mode only
appears in the quadrant [π/2, π] and keeps a constant en-
ergy within the experimental error: it does not perform
any spectral traverse as the phason is scanned, which con-
firms its topologically trivial nature.
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