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Two-dimensional lattices of coupled micropillars etched in a planar semiconductor microcavity offer a
workbench to engineer the band structure of polaritons. We report experimental studies of honeycomb
lattices where the polariton low-energy dispersion is analogous to that of electrons in graphene. Using
energy-resolved photoluminescence, we directly observe Dirac cones, around which the dynamics
of polaritons is described by the Dirac equation for massless particles. At higher energies, we observe
p orbital bands, one of them with the nondispersive character of a flatband. The realization of this structure
which holds massless, massive, and infinitely massive particles opens the route towards studies of the
interplay of dispersion, interactions, and frustration in a novel and controlled environment.
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Engineering Hamiltonians in controlled systems has
proven to be a useful tool to simulate and unveil complex
condensed matter phenomena otherwise experimentally
inaccessible. Indeed, condensed-matter systems usually
lack control and observables, whereas model systems such
as ultracold atoms [1], arrays of photonic waveguides [2],
or polariton gases [3] enable the control of the density, the
temperature, and, in the case of lattice systems, the top-
ology of the band structure. In this context, the honeycomb
lattice, whose geometry is responsible for the properties of
graphene, has attracted a lot of attention. This extraordinary
material shows pointlike intersections between the con-
duction and valence bands. Around those points, referred
to as Dirac points, the energy dispersion is linear, and
electrons behave like massless relativistic particles [4]. The
honeycomb geometry gives rise to intriguing phenomena
such as anomalous Klein tunneling and geometric phase
effects that result in the antilocalization of electrons [4]. In
addition, geometric frustration in the honeycomb lattice is
expected to give rise to nondispersive bands in which all
states are localized [5]. These bands have not yet been
experimentally evidenced.
The investigation of this physics has triggered the

realization of simulators [6] whose parameters can be
controlled in a range not easily accessible in graphene.
For instance, honeycomb lattices for cold atoms [7,8],
electrons in solids [9] and molecules [10], and acoustic
waves [11] were realized. In photonics, honeycomb lattices
were created using light-induced lattices in nonlinear
crystals [12], microwave-domain photonic crystals [13],
arrays of coupled waveguides [14,15], and resonators [16].
While these systems have shown remarkable features like
topological phase transitions [8] or the possibility of

including synthetic gauge fields [14], they lack simulta-
neous control of the particle momentum, local potential,
interactions and on-site visualization. In this sense, polar-
itons in semiconductor planar microcavities appear as an
extraordinary platform overcoming these limitations [3].
These light-matter particles, which arise from the strong
coupling between cavity photons and quantum well exci-
tons can be created, manipulated and detected using optical
techniques. Two-dimensional lattices for polaritons have
been implemented using surface acoustic waves [17] and
gold deposition at the surface of the cavity [18–20].
However, the former method allows very limited lattice
geometries, while the latter can only provide very shallow
modulations of the potential. Alternatively, the recent
realization of coupled micropillars based on deep etching
of a planar structure [21,22] has opened the way towards
the engineering of lattices for polaritons with controlled
tunneling and deep on-site potentials with arbitrary
geometry.
In this Letter, we report on a honeycomb lattice for

polaritons, made of hundreds of coupled micropillars etched
in a planar semiconductor microcavity. By monitoring the
photoluminescence at low excitation density, we directly
image the energy dispersion of the structure, which reveals
several energy bands. The lowest two arise from the
coupling between the fundamental modes of the micro-
pillars. They are analogous to the π and π� bands of
graphene [4]. In particular, we evidence six Dirac cones
at the corners of the first Brillouin zone (Bz), around which
the energy dispersion is linear. When increasing the exci-
tation intensity, we observe polariton condensation occurring
at the top of the π� band, showing spatial coherence
extended over the whole excitation spot. Additionally, we
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report on the presence of higher-energy bands arising from
the coupling between higher-energy modes of the pillars. In
particular, we observe a nondispersive band in which
polaritons have an infinite effective mass. The observation
of this flatband opens the way to the study of the interplay of
interactions, frustration, and spin dynamics in a novel
driven-dissipative framework.
Our structure is a Q ¼ 72000 λ=2 microcavity.

It is a Ga0.05Al0.95As layer surrounded by two
Ga0.05Al0.95As=Ga0.8Al0.2As Bragg mirrors with 28 (40)
top (bottom) pairs. Twelve GaAs quantum wells of 7 nm
width are inserted inside the cavity, yielding a 15 meV Rabi
splitting. Experiments are performed at 10 K and -17 meV
cavity-exciton detuning. We engineer a honeycomb lattice
of coupled micropillars by using electron beam lithography
and dry etching of the sample down to the GaAs substrate
[see Fig. 1(a)]. The diameter of each pillar is d ¼ 3 μm, and
the distance between two adjacent pillars (the lattice
constant), is a ¼ 2.4 μm. The etched cavity shows a
polariton lifetime of 27 ps at the bottom of the lower
polariton band. As the interpillar distance is smaller than
their diameter, the pillars spatially overlap [see Fig. 1(b)].
This results in a sizable polariton tunnel coupling between
adjacent micropillars via their photonic component [22].
For our structure, the tunnel coupling amounts to 0.25 meV.
The system is excited out of resonance with a Ti:Sapph
monomode laser at 730 nm, in a spot of 30 μm diameter
covering around 30 pillars. The photoluminescence is
collected through a high numerical aperture objective

(NA ¼ 0.65), dispersed in a spectrometer and detected by
a CCD camera on which we can image either the real or the
momentum space. Note that a chopper was used in the case
of high power excitation to avoid heating of the sample.
Under low-power excitation, incoherent relaxation of

polaritons results in the population of all the energy bands.
Note that for low power excitation polariton-polariton
interactions are negligible so that single particle physics
of the honeycomb lattice is probed. Figure 1(d) shows the
measured far field photoluminescence containing many
groups of bands, separated by energy gaps. The two lowest
bands (S bands) arise from the coupling between the
fundamental mode of the pillars (S modes). At higher
energy, we observe a group of four bands (P bands) arising
from the coupling between the first excited state of the
pillars, which is twice degenerate and has two lobes [22] [see
Fig. 1(e)]. The separation between these two groups of bands
is ΔE ¼ 3.2 meV, the energy difference between the two
lowest- energy states of the individual pillars. Above those
two groups of bands, many others can be seen arising from
the hybridization of higher energy modes of the pillars.
The two S bands stem from the coupling between

micropillar states which have a cylindrical symmetry
similar to that of the carbon Pz electronic orbitals in
graphene. Thus, we expect the two S bands to present
features analogous to the π and π� bands of graphene,
including six Dirac (contact) points [4] in the first Bz [see
Fig. 1(c)]. Figure 2(a) shows the measured emitted intensity
in momentum space at the Dirac points energy [zero energy
in Fig. 1(d)]. We observe the six Dirac points at the corner
of the first Bz (yellow points). The adjacent Bzs are also
seen. Figures 2(b) and 2(c) show the measured energy
resolved emission along the lines 1 and 2 indicated in
Fig. 2(a), passing through four and three Dirac linear
intersections respectively. As the confinement energy on
each site of the lattice is much larger than the tunneling
energy, the system is well described by the tight-binding
approximation. Including first- and second-neighbor tun-
neling, the following dispersion can be obtained [4],

EðkÞ ¼ �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ fðkÞ

p
− t0fðkÞ; (1)
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By fitting Eq. (1) to the data in Fig. 2 we extract a value of
the coupling between first and second neighbors of t ¼
0.25 and t0 ¼ −0.02 meV, respectively. The result of the fit
is shown in Fig. 2(b), and yields a group velocity v ¼
3at=2ℏ ¼ 1.3 × 106 m.s−1 around the Dirac points. Note
that the data shown in Fig. 2(b) do not belong to the first
Bz. If we perform the same measurement along line 3 in

FIG. 1 (color online). (a) Scanning electron microscope image
of a corner of the microstructure. One hexagon of pillars is
underlined with blue disks. The dark arrows show the growth axis
of the cavity. The overlap between pillars is sketched in (b).
(c) First Bz. (d) Measured momentum space energy resolved
photoluminescence at kx ¼ −2π=3a [line 0 in Fig. 2(a)], under
nonresonant low-power excitation. (e) Sketch of the real space
distribution of S and P modes in a single pillar.

PRL 112, 116402 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

116402-2



Fig. 2(a), we show in Fig. 2(d) that the emission is absent in
the upper band (dashed line) within the first Bz, and in the
lower band (solid line) within the second Bz. This phe-
nomenon arises from destructive interference in the far field
emission along certain high symmetry directions. It occurs in
lattices with multiple sites per unit cell [23] and has been
observed along the K-Γ-K0 directions in angle- resolved
electron spectroscopy measurements in graphene [24].
By increasing the excitation intensity, we observe polar-

iton condensation, as evidenced by the threshold in the
integrated emission intensity [Fig. 3(d)]. The threshold
power is similar to that observed in a planar structure [25].
The low value of the measured emission blueshift, due to
interactions between polaritons and uncondensed excitons,
[see Fig. 3(d)] certifies that the system remains in the strong
coupling regime across the threshold [26]. Moreover, the
emission spectrum collapses into a single emission line,
and extended spatial coherence builds up. By monitoring
the energy-resolved emitted intensity across the condensa-
tion threshold, we observe that condensation takes place at
the top of the π� band [arrow in Fig. 2(b), [27]]. This state is
located at the Γ point (center of the Bzs) as seen in Fig. 3(a).
The far field destructive interference discussed above
results in the absence of emission from the center of the
first Bz, marked by a cross in Fig. 3(a).

The real space emission of the condensate is shown in
Fig. 3(b), covering the same area as the pump spot. The
intensity maxima are centered on the pillars as expected for a
state arising from the hybridization of S states. We extract its
phase structure as follows: we magnify the image of one
pillar, and make it interfere with an image of the whole
excited region [28]. The normalized interference pattern,
without energy selection, is shown in Fig. 3(c) above the
condensation threshold. We observe spontaneous coherence
over the whole size of the pump beam. At the intersection
between two adjacent pillars [white square in Fig. 3(c)], the
fringes are shifted by half a period. Thus there is a π phase
shift between adjacent pillars, as expected for the antibond-
ing π� band. Note that condensation does not take place
in the ground state. This feature arises from the out of
equilibrium nature of polaritons in which the steady state is
fixed by the interplay between pump, relaxation and decay
[29,30]. The antibonding mode at the Γ point favors
condensation due to two features: (i) its negative effective
mass and positive interaction energy and (ii) its longer
lifetime, which stems from the antisymmetric character of
the state [31] and from the lower nonradiative recombination
rate due to the vanishing polariton density at the constric-
tions between pillars, where the defect density is larger.
We have shown that the two S bands mimic the graphene

π and π� bands. But the honeycomb lattice contains more

FIG. 2 (color online). (a) Measured photoluminescence intensity
in momentum space at the energy of the Dirac points [dotted line in
Fig. 1(d)]. (b) Spectrally resolved far field emission along line 1
in (a). The black line is a fit to Eq. (1). (c) Same as (b) along line 2
in (a). (d) Spectrally resolved far field emission along line 3 in (a),
passing through the first Bz.

FIG. 3 (color online). (a) Photoluminescence emission in
momentum space above the condensation threshold. The black
solid/dashed line shows the first/second Bz. (b) Real space image
of the condensed state. (c) Interference pattern above condensa-
tion threshold. The position of six pillars is underlined with gray
disks. (d) Total emitted intensity (black line) and blueshift of the
polariton emission at the top of the π� band (blue dashed line) as a
function of excitation intensity I0 or power P0.
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than those bands if higher orbital modes are available. In
our lattice, the coupling between P modes of the pillars
leads to four energy bands which appear above the two S
bands, separated by a gap of about 0.7 meV [see Fig. 1(d)].
The P bands are shown in detail in Fig. 4(a) revealing that
the lowest one is flat. Flatbands are characterized by an
infinite effective mass and, consequently, a vanishing
kinetic energy. In this situation, one can show that all
states are localized without interaction [32]. Moreover,
weak interactions have been predicted to give rise to
strongly correlated phases in a lossless system [5,33]. To
understand the origin of the flatbands, one can extend the
usual tight-binding treatment to P states with a Hamiltonian
of the form [5,34]

Ĥ ¼ −
X

hi;ji
½t∥ð ~̂ψ†

i · e
ðLÞ
ij ÞðeðLÞ†ij · ~̂ψ jÞ

þ t⊥ð ~̂ψ†
i · e

ðTÞ
ij ÞðeðTÞ†ij · ~̂ψ

†
jÞ þ H:c:�: (3)

For each ij link, the eðL;TÞij unit vectors are directed
respectively along and orthogonally to the link direction.
In the Hamiltonian, they serve to extract the projections of
the P state respectively along and orthogonal to the link.
The t∥ amplitude then describes hopping between P states
with main lobes located along the link, while t⊥ describes

the (typically much weaker) hopping between states with
lobes located sideways to the link. In the limiting case
where t⊥ ¼ 0 meV and t∥ ¼ −1 meV, the eigenstates of
Eq. (3) give rise to four energy bands plotted in Fig. 4(c).
The two extreme bands are flat, the two intermediate ones
are dispersive. For those parameters, this model describes
well the lower bands observed in the experiment [Fig. 4(a)].
However, the higher energy band in Fig. 4(a) is not flat. This
can be explained by allowing for a weak hopping also for the
P states orthogonal to the link. Indeed in the case where
t⊥ ¼ 0.2 and t∥ ¼ −1 meV, the tight-binding result is
plotted in Fig. 4(d), where the two extreme bands are no
longer flat. The band structure reported in Fig. 4(a) can then
be understood assuming that t⊥ increases with the energy,
resulting in a flatband (t⊥ ≃ 0) at low energy and a
dispersive band (t⊥ ≃ 0.2 meV) at higher energy. Indeed,
the tunneling probability varies exponentially with the
barrier height relative to the state, and thus increases strongly
for higher energy states. In order to confirm this model,
we have performed a numerical simulation of the two-
dimensional Schrödinger equation which reproduces the
observed dispersion [27]. Finally, Fig. 4(b) shows the
flatband real space mode for which intensity maxima sit
between the pillars, thus arranged in a kagome geometry.
In summary, we have implemented a system which allows

direct optical access to the basic properties of engineered
lattices as demonstrated by the direct observation of Dirac
cones in a honeycomb geometry. The position, shape and size
of each lattice site can be controlled at will during fabrication.
Moreover, via resonant excitation of the structure, polariton
wave packets can be created with any desired energy and
momentum. This configuration has been previously used to
evidence polariton flow without scattering and the hydro-
dynamic nucleation of vortices and solitons [3]. It opens the
way to study a number of effects in the honeycomb lattice,
like Klein tunneling at a potential step [35], the geometrical
Berry curvature of the bands [36] and the topological physics
in the presence of synthetic gauge fields [14]. The observa-
tion of a bright flatband suggests the possibility of using a
resonant pump to selectively inject polaritons into it and
investigate the interplay between frustration, dispersion, and
interactions in such flatbands [5,33].
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