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SETUP AND EXPERIMENTAL CONDITIONS

To experimentally evidence the edge states wavefunc-
tions and their dispersion relation we carry out low tem-
perature (10K) luminescence experiments in re�ection
geometry. We excite the sample non resonantly using the
CW monomode Ti:Saphire laser at 740nm wavelength,
about 100 meV above the polaritonic bands, close to the
�st re�ection minimum of the cavity stop band. In this
way we create electron-hole pairs that incoherently relax
and populate all the polaritonic bands of the structure.
Due to their �nite lifetime polaritons escape the cavity in
the form of photons whose energy and in-plane momen-
tum correspond to those of the polaritons from which
they originate. We collect the emitted photons using a
high numerical aperture objective (NA=65), the same
one used to focus the excitation beam. To distinguish
between the real and momentum space imaging two vari-
ations of the setup are used. In the case of real space, the
signal collected by the objective is magni�ed and directly
imaged on the monochromator slit using a movable lens,
see Fig. S1(a). The 1D slice of the image selected by
the slit is then dispersed and imaged by a Peltier cooled
CCD. Using a motorized translational stage, the position
of the imaging lens is uniformly shifted such that the im-
age of the whole lattice can be reconstructed, revealing
the wavefunction distribution at di�erent energies.

In order to reveal the dispersion of the edge states, an-
gle resolved measurements have been performed by using
an additional lens, see Fig. S1(b). Upon escaping the cav-
ity photons emitted at the certain angle are all focused
by the objective on the same point of Fourier plane. This
plane is then imaged on the monochromator slit revealing
the dispersion (far �eld imaging).

P-BANDS HAMILTONIAN FOR A

NANORIBBON

In the tight-binding calculations, we consider a p-
orbital honeycomb lattice in a nanoribbon geometry: an
in�nite lattice in one direction and �nite in the perpen-
dicular one, ending with the same type of boundary on
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FIG. S1. Scheme of the experimental setup to measure energy
selected real-space (a), and angle resolved �momentum sapce�
(b) images.

both sides. Ribbons with zigzag and bearded edges, in-
�nite in the y-direction and �nite in the x-direction, are
shown in Fig. S2(a, b). The ribbon with armchair ter-
minations is in�nite in the x-direction and �nite in the
y-direction, Fig. S2(c). In order to include the informa-
tion about the edges into the tight-binding Hamiltonian,
we take a unit cell dimer such that the whole nanoribbon,
with the speci�c type of the edge, can be reconstructed by
the translation of that dimer [S1]. The unit cell dimers
for the three di�erent nanoribbons in Fig. S2(a-c) are
shown in orange rectangles. The corresponding unit cell
vectors can be chosen in the following way (green arrows
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FIG. S2. Geometry of the honeycomb lattice ribbons with (a)
zigzag, (b) bearded and (c) armchair edges, with the corre-
sponding unit cell dimers and unit cell vectors.

in Fig. S2(a-c)):

bearded, armchair : u1 = a1,

u2 = a2,

zigzag : u1 = a1,

u2 = a1 − a2, (S1)

where a1 = a( 3
2 ,
√
3
2 ) and a2 = a( 3

2 ,
−
√
3

2 ).
In the nearest neighbour approximation, the Hamilto-

nian is given by the factors f1, f2 and g [Eq.(1) in the
main text] which have the following form [S2]:

f1 =
3

4
(eik·u1 + eik·u2),

f2 = 1 +
1

4
(eik·u1 + eik·u2),

g =

√
3

4
(eik·u1 − eik·u2), (S2)

where u1 and u2 are given in Eq. (S1) for the three types
of edges considered in the main text. The numerical fac-
tors in equations (S2) arise from the |tL| � |tT | con-
dition, which accounts for the di�erent overlap between
the p-orbitals projected along the directions parallel and
perpendicular to the link between the lattice sites.

DRIVEN DISSIPATIVE TIGHT-BINDING

SIMULATION

To understand the inhomogeneities that appear in the
measured far �eld intensity in Fig.1(e-f) in the main text,
we account the e�ect of photonic losses in the tight-
binding lattice. This can be simulated by a Schrödinger
equation of the form:

i~
∂

∂t
ψ =

(
H − iγ

2

)
ψ + Fpe

iωt, (S3)

where, H is the tight-binding Hamiltonian, γ represents
the losses induced by the �nite polariton lifetime, and Fp

is a resonant pump at frequency ω and spatially centered
on a single micropillar with a Gaussian envelope [S3].
We assume losses at a rate γ = 0.2tL for all lattice sites.
To simulate the bulk luminescence we place the coherent
pump Fp, with frequency ω, at the central site of the
ribbon, far from the edges. We search for the steady-
state solutions of Eq. (S3). The time-independent am-
plitudes Am,n and Bm,n of the A and B sublattice sites
(see Fig. S6) then satisfy a linear system of equations:

~
(
ω + i

γ

2

)
Am,n + tBm,n + tBm−1,n−1 + tBm−1,n+1 = f (A)

m,n

~
(
ω + i

γ

2

)
Bm,n + tAm,n + tAm+1,n+1 + tAm+1,n−1 = f (B)

m,n

(S4)

where f
(A/B)
m,n is the spatial amplitude pro�le of the

pump on the A/B site of unit cell m,n. To reconstruct
the dispersion, the distribution obtained from the above
equations is Fourier transformed and the procedure is
repeated for di�erent frequencies ω of the pump. Fig-
ure S3(a) shows the Fourier transformed intensity as a
function of ky for the value of kx = 4π/3a for di�erent
resonant pump frequencies. This result can be compared
to the experimental data in the Fig. 1(e) of the main text,
here replotted in Fig. S3(c). As we can see, the main
features of the experiment are well reproduced by the
simulation, including the destructive interference in the
upper dispersive band around ky = 0. This point crosses
a high symmetry direction along which odd real-space
eigenfunctions interfere destructively in the far �eld.

We perform a similar calculation with the excitation
spot placed at the edge with the zigzag boundary in-
stead of the central site of the lattice. The computed
intensity pattern is plotted in Fig. S3(b), which repro-
duces well the experimental data in Fig. S3(d) [Fig. 1(f)
in the main text] excluding the polarisation e�ects, which
are not taken into account in this simulation.

MOMENTUM SPACE EMISSION ON THE

ARMCHAIR EDGE

Similarly to the zigzag edge states dispersion shown
in Fig. 1(f), we perform momentum space spectroscopy
on the armchair edge. Figure S4(d) shows the emission
from the edge states, which can be identi�ed by compar-
ing it with images when exciting the center of the lattice
[Fig. S4(c)]. The dispersive edge modes are clearly vis-
ible between the �at bands. Note that the dark regions
arise mainly from the destructuve interference along high
symmetry directions described in the main text. This
interference e�ects are also found in driven dissipative
tight-binding simulations [Fig. S4(a),(b)].
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FIG. S3. (a-b) Momentum space distribution along the ky
direction for kx = 4π/(3a) obtained from a driven-dissipative
tight-binding simulation when exciting the bulk (a) or the
edge (b) of a ribbon with zigzag terminations. (c-d) Measured
momentum-space luminescence for the same value of kx for
excitation in the bulk (c) and at the edge (b).

WINDING NUMBER

For a Hamiltonian of the form

(
0 Q†

Q 0

)
, where the

matrix Q is de�ned in the main text [Eq. (1)], the number
of pairs of zero-energy edge modes for a given value of k‖
parallel to the edge is given by the winding of the phase
of detQ along the direction perpendicular to the edge,
the winding number, as discussed in detail in Refs. [S1,
S4, S5]:

W(k‖) =
1

2π

∫
BZ

∂φ (k)

∂k⊥
dk⊥, (S5)

where φ = arg (detQ), k⊥ is the momentum directed
perpendicularly to the considered edge, and BZ indicates
a one-dimensional integral over the Brillouin zone. In
Fig. S5, we plot the phase φ, represented by the orienta-
tion of the arrows at each point in k space, calculated for
zigzag and bearded terminations for the s- [arg (det fs)]
and p-states [arg (det fp)], where fs and fp are de�ned in
the main text.

NUMERICAL CALCULATION OF EDGE STATES

WAVEFUNCTION

Here we brie�y discuss how Fig. 3 (d-f) of the main
text are numerically calculated. In order to obtain the
wavefunction localized at the armchair edge, we con-
sider a nanoribbon with an in�nite length in x-direction
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FIG. S4. (a-b) Momentum space distribution along the kx
direction for ky = −4π/(3

√
(3)a) obtained from a driven-

dissipative tight-binding simulation when exciting the bulk
(a) or the edge (b) of a ribbon with armchair terminations.
(c-d) Measured momentum-space luminescence for the same
value of ky for excitation in the bulk (c) and at the edge (b).

and a �nite size in y-direction. We then diagonalize
the nanoribbon Hamiltonian and �nd eigenstates corre-
sponding to the edge states indicated in Fig. 2(c) of
the main text. The obtained eigenstates are plane waves
in the parallel direction, with wavevector kx = −π/3a,
+π/3a, and 0 [Fig. 3 (d), (e), and (f), respectively] and
exponentially decaying in the perpendicular direction.
For each eigenstate, the wavefunction at each site has two
components corresponding to two orbital degrees of free-
dom. For concreteness, let the spinor (ψx, ψy) denote the
wavefunction of a site at the origin in basis of px and py
orbitals. In order to plot the wavefunction corresponding
to this spinor, we assume that the x-oriented basis state
is proportional to φx(x, y) ≡ x · e−(x2+y2)/2σ2

, where the
factor of x in front ensures that the state has the correct
odd parity of the px orbital state around x = 0 (center
of the pillar). The subsequent Gaussian has one free pa-
rameter σ, which determines the width of the state; we
use σ = 0.35a for all the calculations, which is chosen
so that the simulation resembles the experimentally ob-
served real space emission. Similarly, the y-oriented basis
state is chosen to be φy(x, y) ≡ y ·e−(x2+y2)/2σ2

. The real
space wavefunction corresponding to the spinor (ψx, ψy)
is ψxφx(x, y) + ψyφy(x, y). We construct the wavefunc-
tion of each lattice site with this method and superpose
the wavefunctions from all lattice sites in the region of
interest to �nally obtain the wavefunction corresponding
to the eigenstates, which are plotted in Fig. 3 (d-f).
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FIG. S5. Winding of the phase φ(k) for s-band graphene
(top row) and orbital p-band graphene (bottom rows). The
winding number W(k‖) is indicated, k‖ being the direction
of the wave vector along the edge. The colored region is a
rectangular Brillouin zone. In the pink regions, the winding
numberW is even while it is odd in the green regions. Both in
s- and p-bands, the regions in momentum of existence of edge
states are complementary between the zigzag and bearded
edges. Additionally, they are complementary between s- and
p-bands for the same kind of edge. There is an additional
p-edge state at the bearded edge for all values of k‖, resulting
in an additional winding of the phase.

ANALYTICAL EXPRESSIONS FOR THE

ENERGY OF THE DISPERSIVE EDGE STATES

To obtain the analytical expressions for the energy of
the dispersive, non-zero energy edge states in zigzag and
bearded edges we look for the exponentially decaying so-
lutions of the tight-binding Hamiltonian of a nanoribbon.
To illustrate the procedure we apply it �rst to the sim-
pler case of s-bands graphene [S6]. The �rst step is to
reduce the two-dimensional problem of a nanoribbon to
an equivalent one-dimensional problem, that is, to reduce
our s-band honeycomb problem to the SSH problem. The
Hamiltonian of the nanoribbon in Fig. S6 is given by:

H = −ts
∑

m-n is even

(
a†m,nbm,n + a†m+1,n+1bm,n

+ a†m+1,n−2bm,n + h.c.

)
(S6)

To solve the Schrödinger equation H |Ψ〉 = E |Ψ〉 we
expand the state |Ψ〉 in terms of the creation operators

ts

ts

ts

FIG. S6. Graphene nanoribon with bearded edges

as:

|Ψ〉 =
∑

m-n is even

(
Am,na

†
m,n +Bm,nb

†
m,n

)
|0〉 (S7)

where |0〉 is the state without any particle in the system.
The coe�cients Am,n and Bm,n represent the wavefunc-
tions in A and B sublattices at the position (m,n). Using
this expression for |Ψ〉, the Schrödinger equation implies
the following relations for the coe�cients Am,n and Bm,n:

−ts(Bm,n −Bm−1,n−1 −Bm−1,n+1) = EAm,n

−ts(Am,n −Am+1,n+1 −Am+1,n−1) = EBm,n. (S8)

For a nanoribbon with bearded or zigzag edge the sys-
tem is periodic (or in�nitely long) along the y-direction.
That means that we can expand the wavefunctions in
terms of the plane wave in y-direction, i.e., we replace
the wavefunctions in (S8) by:

Am,n = ei
√

3
2 akynAm Bm,n = ei

√
3

2 akynBm (S9)

In this way we obtain the equations:

−ts(Bm − (e−i
√

3
2 aky + ei

√
3

2 aky )Bm−1) = EAm

−ts(Am − (e−i
√

3
2 aky + ei

√
3

2 aky )Am+1) = EBm (S10)

If we de�ne α ≡ (e−i
√

3
2 aky + ei

√
3

2 aky ) = 2 cos(
√
3
2 aky)

these equations can be written as :

−ts



. . .

0 1 0 0 0 0
1 0 α 0 0 0
0 α 0 1 0 0
0 0 1 0 α 0
0 0 0 α 0 1
0 0 0 0 1 0

. . .





...
Am−1
Bm−1
Am
Bm
Am+1

Bm+1

...


= E



...
Am−1
Bm−1
Am
Bm
Am+1

Bm+1

...


(S11)
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This set of equations has the same form as the
Schrödinger equation describing a one dimensional chain
with staggered hopping amplitudes (the so-called SSH
model). The hopping amplitude within the unit cell
dimer, ts, is the same as the one in the honeycomb lattice
in Fig. S7. The e�ective hopping amplitude between ad-
jacent unit cell dimers in the chain is αts. The Hamilto-
nian of the system is given by the matrix on the left-hand
side of the Eq. (S11). The di�erence between bearded
and zigzag case is that, to calculate the bearded edge,
one starts from the A sublattice and ends at the B sub-
lattice. For the zigzag, one starts from the B sublattice
and ends at the A sublattice.

Now, we search for eigenvalues of this Hamiltonian cor-
responding to eigenfunctions which are exponentially de-

caying into the bulk: |AM | = |A0|e
−3a
2ξ M ≡ |A0||Ω|M .

Here A0 is the amplitude of the wavefunction on the �rst
site of the chain, M counts the number of unit cells from
the edge and ξ is the penetration length. In order to
have a decaying wavefunction, we need to have |Ω| < 1.
Analogue expressions can be written for the B sites. Fig-
ure S7 shows bearded and zigzag ribbons and the equiv-
alent 1D chains, with corresponding hopping and wave-
function amplitudes for the edge states.

After imposing the exponentially decaying solution to
the problem, the Schrödinger equation for bearded edges
has the form:

−ts



0 1 0 0 0 0
1 0 α 0 0 0
0 α 0 1 0 0
0 0 1 0 α 0
0 0 0 α 0 1
0 0 0 0 1 0

. . .





A0

B0

A0Ω
B0Ω
A0Ω2

B0Ω2

...


= E



A0

B0

A0Ω
B0Ω
A0Ω2

B0Ω2

...


(S12)

This system of equations has four unknowns: A0, B0,Ω
and E. However, we can normalize the wavefunction to
the amplitude A0 of the outermost site. Therefore we
have only three unknowns left. They can be found by
taking the �rst three equations from the set of equa-
tions (S12):

εA0 = tsB0

εB0 = tsA0(1 + αΩ)

εA0Ω = tsB0(α+ Ω) (S13)

All the other equations contained in Eq.(S12) are
equivalent to the set (S13). Using the condition |Ω| < 1
we obtain the regions in momentum space where the zero
energy edge states exist, Ref. [S6]. For the bearded edge
we have B0 = 0 and:

s-band bearded s-band zigzag

Equivalent problems:
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(a)
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t
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FIG. S7. (a) s-bands honeycomb lattice nanoribbons with
bearded and zigzag edges (b) Equivalent dimer chains. Hop-
ping amplitudes are given on the links between the chain sites,
and amplitudes of the edge states wave functions below the
chain sites.
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FIG. S8. Amplitudes of the wave function for zigzag nanorib-
bon in the p-band: the problem is reduced to two coupled
dimer chains.The hopping amplitudes are given on the links
between the chain sites.

Ω =
−1

α
=

−1

2 cos(
√
3
2 aky)

2| cos

√
3

2
aky| > 1

(S14)

corresponding to the region marked in green in the upper-
right panel of Fig. S5.

To obtain expressions for the energies of the dispersive
edge states in the p-bands we follow the same procedure.
In this case, due to the existence of two modes per site,
the reduction to the 1D problem involves two coupled
chains corresponding to the px and py orbitals on each
lattice site. Figure S8 shows the hopping amplitudes cor-
responding to a ribbon with zigzag edges.

We search again for exponentially decreasing solutions
of the form |AMx| = |A0x||Ω|M with |Ω| < 1 (equiva-
lently for |AMy|, |BMx|, |BMy|). Now we have six un-
known variables A0x, A0y, B0x, B0y,Ω, E or �ve after we
normalize them to B0y. By taking the �rst �ve linear
equations of the the Schrödinger problem, we get the set
of coupled equations:
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εB0y = tL(γA0x + αA0y)

εB0x = tL(3αA0x + γA0y)

εA0x = tL(3αB0x + γ∗B0y)

εA0y = tL(αB0y + γ∗B0x + ΩB0y)

εB0yΩ = tL(A0y + αA0yΩ + γA0xΩ) (S15)

The energy of the dispersive edge state in the zigzag
edge is obtained by solving Eqs. (S15) and is given by:

Ezigdisp.edge(k‖) = ±tL
√

3

2

√
2 + cos (

√
3k‖a). (S16)

The penetration length ξ can be easily obtained:

Ω = cos(

√
3

2
k‖a) (S17)

ξ = − 3a

2 ln
[
cos(

√
3
2 k‖a)

] .
The amplitudes of the dispersive edge states eigenfunc-

tions on the unit cell located at the edge are:

A0x = ∓ i

sin(
√
3
2 k‖a)

√
cos(

√
3

2
k‖a) + 2 , A0y = 0

B0x = −i
√

3 cot(

√
3

2
k‖a) , B0y = 1

(S18)

where ∓ for the A0x coe�cient applies, respectively, to
the positive/negative energy dispersive states.

Similar expressions describing the energy of the dis-
persive edge state in bearded edges [Eq.(8) in the main
text], can be found in the same way.
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