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A Higher energy states of the hexagonal molecule 

The polariton benzene molecule employed in our studies is made out of six overlapping 

cylindrical micropillars. In a single micropillar the three-dimensional confinement of polaritons 

results in discrete energy levels whose spacing is determined by the diameter of the 

molecule and the exciton-photon detuning. In our structure, their diameter is 3 µm and the 

photon-exciton detuning -5 meV, giving rise to a splitting between the lowest and first excited 

states on the order of 2 meV [1]. The spatial overlap of the micropillars creates a coupling 

between the ground states of adjacent pillars of 0.3 meV, resulting in the molecular energy 

levels �(	) , 	 = 0,1,2,3 . They can be studied in energy-resolved photoluminescence 

experiments at low power, as shown in Fig. 1 and in Fig. S1(a). For energies above 

1567 meV, we observe the emission from the molecular eigenstates arising from the 

coupling between the first excited states of the pillars. In Fig. S1(b)-(c) we show the 

measured spatial pattern corresponding to the lowest two, labeled �(4) and �(5). 

 

Figure S1. (a) Photoluminescence spectrum in the conditions of Fig. 1(b) of the main text with 

extended energy range, allowing the observation of higher energy states. In particular, �(4) and �(5) 
are the lowest two molecular eigenstates arising from the coupling of the first excited states of the 

individual micropillars. (b) Real- and (c) momentum-space emission from states �(4) and �(5). 
 

B Tunnel coupling and next-nearest neighbor effects 

The value of tunnel coupling of 0.3 meV for the lowest energy states was measured in two 

coupled micropillars with the same diameter and overlap as the micropillars designed in the 

hexagonal molecule [2]. In addition to nearest-neighbor coupling, next-nearest-neighbour 

coupling is also possible, and it has been evidenced in the polariton honeycomb lattice 

described in Ref. [3]. This honeycomb lattice was made out of overlapping micropillars of the 

same diameter and center-to-center distance than those of the hexagonal structure 

considered here. The polariton dispersion in the lattice was well fitted using a tight binding 
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model with nearest-neighbor coupling of 0.25 meV and next-nearest-neighbor coupling of  

-0.02 meV.  

In the actual hexagonal molecule, next-nearest-neighbor tunneling alters the energy splittings 

between the different �(	) levels. Nevertheless, next-nearest-neighbor coupling does not 

seem to play a major role in spin-orbit effects. This is probably due to its reduced value 

compared to the nearest-neighbor coupling. Its negligible influence is confirmed by the good 

quantitative agreement between the polarisation textures reported in Figs. 4 and 5 of the 

main text and those expected from the tight-binding model without next-nearest-neighbor 

coupling (Fig. 2). 

C Visibility of fringes for states �(�) and �(�) in Fig. 1 

Disregarding the spin degree of freedom, eigenstates corresponding to �(1) and �(2) levels 

are doubly degenerate. These levels contain eigenstates with angular momenta � = ±1 and 

� = ±2, respectively. For each one of them the emission in the low power regime arises from 

a linear combination of states with opposite orbital momentum �. For instance, in the case of 

the �(1) level, the emission arises from the combination of � = +1 and −1 eigenstates:  

|��(�, �)� = ∑ 12�� �⁄ 	 !"�#$ %⁄ |�� + 12�� �⁄ 	 �"�#$ %⁄ !"&|��$ ,    (A) 

where we have assumed that both states have equal probability of being populated. |�� is the 

lowest energy state of each individual micropillar and � is a relative phase whose value, in 

the spontaneous emission regime, changes randomly in time. When doing an interferometric 

experiment integrated in time as the one shown in Fig. 1, in which the emission from a 

reference pillar interferes with that of the whole molecule, this random phase has an 

important influence in the visibility of fringes. 

As explained in the main text, maximum visibility takes place only at the positions of the 

micropillar used as a reference [arrow in Fig. S2(c)] and of that located opposite to it [dashed 

arrow in Fig. S2(c)]. Both of these pillars share instantaneously the same phase structure 

with an overall change of	', independent of the relative random phase �. This results in a 

high fringe visibility. Intermediate pillars mix different phases from the � = ±1 states. In those 

pillars, the interference with the reference pillar results in a pattern that changes in time 

depending on the relative random phase between the two substates. When averaging in time 

as done in our experiment, the fringe visibility reduces to zero at points of the molecule 

located ±90°  from the reference pillar. This is shown in Fig. S2(k), where we plot the 

measured visibility of fringes at each point in space for the emission corresponding to level 

�(1). The visibility was obtained from the amplitude of the real part of the off-diagonal Fourier 

transform analysis performed on the interferometric images. 

We can qualitative reproduce this behavior by calculating the expected fringe visibility for the 

state described by Eq. (A) when interfering with the emission from the reference pillar. This 

can be done by computing the absolute value of the following quantity: 

*(+) = 1
2', ��(0, �)��∗(+, �)

|��(0, �)||��∗(+, �)|
�#

.
/� 



4 

 

where we have parameterized 02'� 6⁄  in Eq. (A) as +. In this case of � = ±1, + corresponds 

to the geometric angle when turning around the molecule [see sketch in Fig. S2(c)]. The 

calculated visibility of fringes |*(+)| as a function of the geometric angle from the reference 

pillar is shown in Fig. S2(n). Two points of zero visibility are expected at + = 90° and 270°, 
as observed experimentally. The same situation is found for the emission at the energy of 

�(2) , in this case with four points of zero visibility located at + = 45°, 135°, 225°, 315° 
[Fig. S2(j): experiment; Fig. S2(m): theory]. 

The �(0) level is non-degenerate and its visibility is high over all the pillars [Fig. S2(l)]. The 

same situation is expected for �(3). However, in this case, there is a phase jump of ' from 

pillar to pillar, and the wavefunction has a node in between the pillars. This results in no 

emission at those points and thus, a vanishing visibility in between the micropillars 

[Fig. S2(i)]. 

 

 

Figure S2. Interference (a)-(d), extracted phase (e)-(h) and visibility of fringes (i)-(l) of the 	 = 0,1,2,3 

levels measured in the spontaneous emission regime at low excitation density (conditions of Fig. 1 of 

the main text). (n-m) Expected visibility of fringes corresponding to the 	 = 1 (n) and 	 = 2 (m) levels. 
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D Measurement of the polarization structure of the � = � and � = � condensed states 

The polarization of light emitted at a particular point of the sample can be described in the 

paraxial approximation as in Born and Wolf [4]. We can define an arbitrary polarization state 

in the following way: 

�3 = 4�(5)6789:; + <�(5)=, 
�> = 4�(5)6789:; + <�(5)=, 

where 4�,�(5) describes the amplitude of the electric field along the	? and @ directions in the 

plane of the molecule at a given point 5, : is the frequency of light and <�,�(5) are fixed 

phases for each component. The polarization state is fully determined by the ratio 

4�(5) 4�(5)⁄  and by the phase difference <�(5) − <�(5). 
The condition for linear polarization is < = <�(5) − <�(5) = A', with A = 0,±1,±2,…, with the 

ratio 4�(5) 4�(5)⁄  defining the direction of polarisation. Circular polarization is obtained under 

the condition 4�(5) = 4�(5), < = <�(5) − <�(5) = A' 2⁄ , with A =	±1,±3, ±5,…	Other values 

of 4�(5) 4�(5)⁄  and < result in elliptical polarisations. 

A basis of interest is that of circular polarization: 

�C! = 4C!(5)6789:; + <C!(5)=? − 0	4C!(5)6789:; + <C!(5)=@, 

�C� = 4C�(5)6789:; + <C�(5)=? + 0	4C�(5)6789:; + <C�(5)=@, 

In this basis, a linear polarized state corresponds to 4C!(5) = 4C�(5); the phase difference 

<C(5) = <C!(5) − <C�(5)  sets the direction of the linear polarisation: 

� = −(<C!(5) − <C�(5)	) 2⁄ , with � the clockwise angle from the ? direction. 

Experimentally, the polarization state of the emission can be fully described by the Stokes 

coefficients: 

D. = EFGF 

D� = E3 − E>
D.  

D� = E!HI − E�HI
D.  

DJ = EC! − EC�
D.  

where E3,>,!HI,�HI,C!,C�  are the emitted intensities when detecting the linearly polarized 

emission along the x, y axis, the +45º, -45º directions with respect to the x axis, and the 

K+, K − circularly polarization, respectively. D�, D�, DJ, are defined such that they correspond 

to the degree of polarisation along the same axes. The relation to the 4C!/4C� ratio and � is: 

4C!
4C� = DJ + 1

DJ − 1 
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� = 1
2 arctan	R

D�
D�S 

Graphically, the polarization state corresponds to a point in the Poincaré sphere determined 

by the D�, D�, DJ axis: 

 

 

Figure S3. Poincaré sphere 

representing the polarisation state of 

the emitted light. Note that T =
arccos DJ. 

 

In order to reconstruct the linear polarization patterns shown in Figs. 4g and 5g, we measure 

the Stokes coefficients D�  and D�  by using a linear polariser in combination with a half-

waveplate. Due to constraints in the experimental set-up, in order to reconstruct the linear 

polarization map shown in Figs. 4g and 5g we measure D� and D� along the polarisation axes 

oriented 22.5º/112.5º and 67.5º/157.5º with respect to the x direction (horizontal) in Figs. 4 

and 5. We can redefine the coefficients D� and D� along those axes: 

D�W = E��.I − E���.I
D.  

D�W = E%Y.I − E��IY.I
D.  

DJ is measured by using a quarter-waveplate and a linear polarizer. 

Figures S4 and S5 show the polarization emission filtered in the different projections needed 

to reconstruct D�W, D�W , and DJ corresponding to the situations described in Figs. 4 and 5 of the 

main text, respectively. The angle Z shows the orientation of the polarizers used to analyse 

the emission with respect to the horizontal axis of the molecule, as defined in the inset. From 

images (a) through (d) in Figs. S4 and S5 we can extract the direction of the linear 

polarization of the emission plotted in Figs. 4g and 5g. The angle � setting the direction of 

linear polarization at each point in the plane of the figures is calculated from the following 

expression: tan[2 ∙ (� + 22.5∘)^ = D�W D�W⁄  where �  increases counterclockwise and 0 

corresponds to the horizontal positive direction. Note that the shallow diagonal traces 

observed in Figs. S4 and S5 arise from an artefact due to the use of neutral density filters in 

the detection path. 
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Figure S4. Linear polarization tomography of the 	 = 1 condensed state shown in Fig. 4 of the main 

text. From the degree of linear polarisation reported in (g)-(h), we extract the linear polarization 

direction for each point of the molecule, as shown in Fig. 4g. 

 

 

Figure S5. Linear polarization tomography of the 	 = 2 condensed state shown in Fig. 5 of the main 

text. From the degree of linear polarisation reported in (g)-(h), we extract the linear polarization 

direction for each point of the molecule, as shown in Fig. 5g. 
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E Level splitting under spatially inhomogeneous pumping 

The origin the doublets visible in Fig. 3d-f is the fluctuation in the spatial position of the pump 

spot when changing the power of the excitation beam. The motorized stage controlling the 

input power induces a slight spatial shift of the pump spot with respect to the center of the 

structure. This shift creates an inhomogeneous excitonic reservoir distribution around the 

molecule. The interaction between the reservoir and the polaritons shifts the polariton energy 

locally proportional to the reservoir density [2]. Therefore, in this situation, the eigenstates 

are no longer those depicted in Fig. 2, which were calculated assuming identical onsite 

energies for all the micropillars. Instead, the eigenstates are deformed and condensation 

takes place in states oriented along and perpendicular to the offset direction and with 

different energies. Slight movements of the pump spot during the power dependence give 

rise to this phenomenon and to the appearance of doublets in the spectra shown in Fig. 3d-f. 

 

Figure S6. Photoluminescence of the �(1) multiplet under dis-symetrized pump excitation at 84 mW. 

The localtion of the center of the Gaussian pump spot (FWHM 10 µm) is shown in (c). (a) Emission 

spectrum for horizontally polarized emission. A doublet is visible. Giving rise to the spatial patterns 

shown in (b) and (c). (d)-(f) Analogous to (a)-(c) for vertically polarized detection. 

 

In order to prove this, we have measured the spatial distribution of the two substates for an 

intentional offset of the pump spot position with respect to the center of the photonic 

molecule. This situation is shown in Fig. S6, for condensation in level �(1) at 84 mW of pump 

intensity. The situation corresponds to that of Fig. 4 except that in the case considered here 

the center of the spot was moved to the position marked with a pink dot in Fig. S6(c). In this 

case condensation takes place simultaneously in two substates labelled HL and EL in 

Fig. S6(a) and (d). By performing a spectrally resolved detection we map out the spatial 
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shape of the emission from each level, shown in Fig. S6(b), (c), (e) and (f). The emission 

from the higher level is mainly polarized in the horizontal polarization, while that of the lower 

level is vertical. This is consistent with a deformation of the potential of the molecule in the 

horizontal direction, as expected from the asymmetry of the injected reservoir, which is 

denser close to the pink dot due to the Gaussian profile of the excitation spot. 

Note that the images shown in the condensation regime in Figs. 4 and 5 of the main text, 

where recorded under symmetric pumping of the molecule, with the pump laser spot 

perfectly aligned with the center of the molecule. In this situation, the blueshift induced by the 

reservoir is perfectly homogeneous, and the eigenstates of the system are well described by 

our model, which assumes identical micropillar energy. This is confirmed by the spatial 

homogeneity of the emission in Figs. 4g and 5g, and the monochromatic emission shown in 

Figs. 4h and 5h. 

 

F Maxwell’s equations simulations 

The fine structure splitting, the level ordering and the polarization patterns predicted by the 

tight-binding model (see full description in Supplementary Section I), can be independently 

studied in our structure by performing finite elements simulations of Maxwell’s equations. We 

can do this using COMSOL in the approximation of infinitely long waveguides. We thus 

simulate six overlapping waveguides whose transverse shape and dimensions are the same 

as the overlapping micropillars we have fabricated. The waveguides are described as perfect 

dielectrics with a refractive index of n=3.54 (that of GaAs at 10K), surrounded by air (n=1). 

The simulations are done for a frequency of the electromagnetic waves corresponding to the 

wavelength of the lowest energy photonic mode of a single micropillar. We calculate the 

effective refractive index of the transverse electromagnetic eigenmodes [5] and retrieve their 

polarization and intensity pattern.  

Figure S7 shows the calculated electric field amplitude and direction of the eigenmodes of 

the multiplets �(1)  and �(2)  along with the splittings for the polariton modes taking into 

account the photonic component of the polariton at a photon-exciton detuning of -5meV. The 

level ordering is the same as that in the tight binding model assuming ℏΔa > Δ�. The linear 

polarization patterns of the lowest energy modes of each multiplet (given by the arrow 

direction), coincide with those observed experimentally in Figs. 4 and 5. From the splittings 

Δ�cd in the two multiplets calculated from the finite element simulation we can estimate the 

values of ℏΔa and Δ�:  

ℏΔa = 1
4 9Δ�cd(|�| = 1) − Δ�cd(|�| = 2)= = 6	μeV 

Δ� = 1
4 9Δ�cd(|�| = 1) + Δ�cd(|�| = 2)= = 5	μeV 
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Figure S7. Intensity distribution (grey scale) and instantaneous electric field direction (arrows) 

calculated from a finite element simulation of Maxwell’s equations for the geometry of our structure for 

the mutiplets corresponding to (a): |�| = 1 [�(1)], and (b): |�| = 2 [�(2)]. The calculated splitting Δ�cd 

between the upper and lowest substates of the multiplet is shown for the polariton modes, taking into 

account the photonic weight of the wavefunction for the photon-exciton detuning under consideration. 

 

 

G Condensation kinetics 

In our structure, we observe two condensation thresholds at two different excitation powers, 

as shown in Fig. 3 of the main text. 

In an open-dissipative system with pumping and lifetime the Bose Einstein condensation 

does not necessarily occur in the ground state since relaxation kinetics and nonlinear effects 

have to be taken into account [6, 7]. Within the simplest approximation, the equation 

describing the occupation of a confined state can be written in the form: 

( ) ( )1 1/
in out

dN
W N N W

dt
τ= + − + ,    (B) 

where τ  is the state lifetime. 
,in out

W  are the scattering rates toward and outward the state. 

They verify: 

/ /b bE k T E k T

in out cR
W W e WY e

− −
= = , 

where, E  is the energy of the considered state, 
cR

Y  is the overlap integral between the state 

density and the exciton reservoir distribution. W  depends on the system parameters, but 
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since the main relaxation mechanism is based on exciton-exciton interaction, W  is a growing 

function of the carrier density and of the pumping power. Equation (B) can be recast as: 

( ) ( )1
in out

dN
W N N W

dt
= + − ɶ  

where 

'/ /b bE k T E k T

in out cR
W W e WY e

− −
= =ɶ  which yields  

1
' ln 1

b

cR

E E k T
WY τ

 
= + + 

 
     (C) 

W , Y  and τ  are in general functions of E . The meaning of the previous development is 

that the state occupation in our pump-dissipative system can be expressed as thermal-like 

distribution function if one defines a new energy scale that includes the effect of particle life 

time. This is what is expressed in Eq. (C), where we can see that the state with the lowest 

effective energy 'E  is not necessarily the original ground state of the system. For instance, 

an excited state with a long lifetime τ can become the state with lowest effective 'E , and 

thus, the most favored for condensation to take place. The exact value of 'E  depends on the 

relaxation efficiency, pumping power, overlap integral between the reservoir and the state, 

lifetime. In the rest of the text we are going to analyze which is the most favored state in the 

molecule depending on the excitation conditions. The increase of W  with pumping reduces 

the impact of the kinetics on the determination of the ground state. 

Lifetime. As a first approximation, the polariton lifetime in this system depends on the 

absolute value of the angular momentum. Indeed, the decay of the particles is given by the 

extension of the wave function out of the structure. This extension is maximal for bound 

states with � = 0, it decreases for higher values of �  and it is minimal for the anti-bound 

states [8] � = 3, with a variation which we estimated numerically of the order of 20 %. As a 

result, condensation in states with � = 0 is not favored by kinetics because of their short 

lifetime. 

There are two additional mechanisms that result in the increase of the polariton lifetime with 

increasing energy. First of all the exciton content increases with energy, resulting in an 

enhanced lifetime. Second, the wavefunction of higher energy modes presents zeroes at the 

constrictions between the pillars, where the density of structural defects is higher. Thus, 

higher energy modes are more protected against the non-radiative losses associated to 

defects. The combination of these effects would result in condensation in the �(3) energy 

level with the lowest threshold. However, to find the state in which condensation first takes 
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place, we need to additionally take into account the overlap of the considered state with the 

reservoir and the polariton interactions. 

Overlap with the reservoir, spin-anisotropic interaction. The spin-anisotropic interaction 

of polaritons makes it energetically favorable for a condensate to be linearly polarized [9]. On 

the other hand, linear combination of states resulting in amplitude inhomogeneities show a 

reduced overlap with the excitonic reservoir, which is homogeneous all over the molecule in 

our excitation conditions. Thus, the � = 3 [�(3)] state is not favored as its wavefunction has 

zeros in between the pillars [see Fig. 1(d)]. Linear combinations of the non-split states of the 

|�| = 1 and |�| = 2 multiplets (marked with arrows in Fig. S7) give rise to circularly polarized 

emission components and spatial inhomogeinities, and are thus also unfavored. For these 

reasons, the states which favor condensation are the linearly polarized, spatially 

homogeneous split states of the |�| = 1 and |�| = 2 multiplets. 

At low pumping, condensation is expected to occur in the most kinetically favored states 

(with higher lifetime), namely the two split states of the multiplet |�| = 2. The choice between 

the upper and lowermost of the two is more subtle. Although the spatial distributions of the 

levels of the multiplet look very similar in Fig. S7(b), they present slight differences. The 

difference arises from the penetration of the electromagnetic field out of the micropillars, 

which depends on the local orientation of the polarisation close to the edge of the structure. 

As the upper and lowermost level hold very different polarisation textures, their 

wavefunctions present spatial differences. Thus, the overlap with the reservoir of these two 

modes is slightly different. Additionally, the energy difference between the substates might 

result in different relaxation rates. These effects, though being small, are enough to trigger 

condensation in the observed states. This situation, in a planar microcavity context, has been 

recently studied from a theoretical point of view in [7]. 

Going to higher power, the depletion of the reservoir and the interactions modify the 

relaxation rates described by 
cR

Y W  in Eq. (C). The effective energies of the state evolve and 

the effective ground state becomes the lowest of the two split states in the multiplet |�| = 1, 

namely, the state with an azimuthal polarization. For the same reasons considered in the 

previous paragraph, condensation is triggered in the lowermost state. 

Numerical simulations. In order to confirm this finding, we use a model based on self-

consistent coupled semi-classical Boltzmann and nonlinear Schrödinger equations 

containing Eqs. (B) and (C) [2], and find a good agreement with the experimental results. 

To carry out a direct comparison with the experiment, we calculate the emission from the 

quantized states of the hexagonal molecule in the reciprocal space, taking into account the 

occupation numbers found from the simulations described above. The results are shown in 

Fig. S8. Below threshold (left panel), all states are approximately equally populated. Main 

emission comes from the ground state which can be identified by a maximum of emission at 

h = 0. At higher pumping (right panel), condensation occurs at the most favored state at this 
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power which, in the case represented in Fig. S8-right, is the state with |�| = 1 and azimuthal 

polarization. The emission from this state dominates the spectrum.  

 

Figure S8. Simulated emission pattern in the reciprocal space  below (left panel) and  above threshold 

(right panel). Condensation occurs in the lowest state of the |�| = 1  multiplet, with an azimuthal 

polarization pattern. 

 

H Spin-Orbit Hamiltonian in operator and effective field forms 

Hamiltonians (3) and (4) in the main text can be expressed in the form of an operator acting 

on a spinor �ij(�) = [�!(�), ��(�)^k , with � = 1,… ,6  the micropillar index and +,- the two 

elements of the circular polarisation basis. For this purpose we introduce the diagonal part of 

the spinor Hamiltonian lm. = lm(∆a = 0, ∆� = 0) . Eigenstates of lm.  are described by the 

quantum number �: 

�(�, K) = −2ℏa	678(2'� 6⁄ ) 

We can introduce an operator om = pqr
psq = 678(2'� 6⁄ )  allowing us to write the complete 

Hamiltonian: 

lm = lm. − ∆�
2 R 0  ��"tu

 �"tu 0 S − ℏ∆a
2 vom R 0  ��"tu

 �"tu 0 S + R 0  ��"tu
 �"tu 0 Somw, 

where +$ = �' 3⁄ . 

In the context of SO coupling in semiconductors, it is meaningful to express the Hamiltonian 

in terms of an effective magnetic field acting on the spin of the particles. In the case of 

Hamiltonian (3)-(4), this can be done in cylindrical coordinates in the following way: 

0 01 1-1 -1
k (µm )

-1
k (µm )

-1

E
 (

m
e

V
)

0

1

2
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x�ij = − ℏ�
2Ay�

z�
z+��ij − Ωiij ∙ �ij 

where R is the mean radius of the molecule and Ωiij is the effective field: 

ℏ|iij	
� = }ℏ	∆F� 678 }#~J � +

∆r
� � R 0  ��"tu

 �"tu 0 S. 

The polarisation patterns in the eigenmodes can then be understood as those arising from 

the alignment and antialignement of the photon pseudospin with respect to the effective field 

Ωiij. 
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I. TIGHT-BINDING DERIVATION OF THE
SPIN-ORBIT HAMILTONIAN OF PHOTONIC

BENZENE

In this section we present the tight-binding derivation
of the spin-orbit Hamiltonians (3) and (4) of the main
text. We consider a chain of cylindrical micropillar cav-
ities arranged at the vertices of a regular polygon of M
sides, as sketched in Fig. 1 for the M = 6 case of the
benzene experiments. The polygon is assumed to sit on
the x− y plane.

FIG. 1. Sketch of the system under consideration.

On each site, a single orbital mode is available, with
an approximately cylindrically symmetric wavefunction.
Each orbital mode has a twofold spin degeneracy corre-
sponding to the two polarization directions on the x and
y directions. On the jth site centered at position Rj ,
the vector electric (or polaritonic) field operator has the
form:

~̂E(r) = φ(r−Rj)[exâj,x + eyâj,y] =

= φ(r−Rj)[eσ+ âj,σ+ + eσ− âj,σy ], (1)

where the âx, ây and âσ+
, âσ− are two among the possible

basis on which the vector electric field can be expanded.

ex,y is a cartesian basis, while eσ± = (ex ± iey)/
√

2 is
the circular basis.

In the following, it will be convenient to use the com-
pact and basis-independent vector notation

âi = exâj,x + eyâj,y = eσ+
âj,σ+

+ eσ− âj,σy
. (2)

For both the cartesian and the circular basis, the com-
mutators satisfy bosonic commutation rules.

For each link connecting the j → j + 1 sites, we can

define the real unit vectors e
(j)
L and e

(j)
T respectively par-

allel and orthogonal to the link direction Ri+1−Ri. The
main assumption of our model is that tunneling along the
j → j+1 link occurs with different amplitudes tL and tT
for photons polarized along the e

(i)
L and e

(i)
T directions,

respectively. For the moment, we will not consider the
onsite splitting ∆E.

In second quantization terms, the many-body Hamil-
tonian then reads:

H = −
M∑
j=1

{[~tL(â†j+1 · e
(j)
L )(e

(j)†
L · âj)+

+ ~tT (â†j+1 · e
(j)
T )(e

(j)†
T · âj)] + h.c.}. (3)

Physically, the e
(j)†
L,T · âj expression selects the component

of the vector âj field on the jth side along the e
(j)
L,T unit

vector. Given the periodic boundary conditions of the
system, in the sum the (M+1)th site has to be identified
with the 1st and the 0th with the Mth.

As the many-body Hamiltonian (3) does not involve
any interaction terms, it is straightforward to derive a
Schrödinger equation for the single-particle C-number
vector wavefunction αj that defines states on the one-
body subspace:

|ψ1〉 =
∑
j

[αj · â†j ]|vac〉 (4)

As usual, the Schrödinger equation can be obtained from
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the Heisenberg equation for the field operators âj

i~
d

dt
âj = [âj , H] (5)

by replacing the field operators âj with the one-body
wavefunction αj . In this way, one obtains

i
dαj
dt

= tLe
(j−1)
L (e

(j−1)†
L ·αj−1)+tTe

(j−1)
T (e

(j−1)†
T ·αi−1)+

+ tLe
(j)
L (e

(j)†
L ·αj+1) + tTe

(j)
T (e

(j)†
T ·αj+1). (6)

If M is even, the symmetry operation S defined as:

S†âjS = (−1)j âj (7)

anticommutes with the Hamiltonian

S†HS = −H. (8)

As a result, if |ψ〉 is an eigenstate of the Hamiltonian
H of energy E, then S|ψ〉 is an eigenstate of opposite
energy −E. At the single-particle level, the action of the
operator S is to invert the sign of the field on the odd
sites

(Sα)j = (−1)jαj , (9)

so that the tunneling energy of each link changes sign.
The standard translation operator T is defined as

T †âjT = âj+1 : (10)

physically, the photon field on the translated state T |ψ〉
at site j is equal to the original field on the site j + 1.
In the general case tL 6= tT , the operator T does not
commute with the Hamiltonian: translation changes the
relative orientation of the photon field âj with respect to

the link frame defined by the pair e
(j)
L,T .

One has to define a new translation operator T̃ as fol-
lows

T̃ †âj T̃ = R−2π/M âj+1 : (11)

translation by one site has to be combined with a rota-
tion by an angle −2π/M so to compensate the different

orientation of the link. This new operator T̃ commutes
with the Hamiltonian H. It is immediate to check that
after a full round trip around the chain, it gives back the
identity T̃M = 1. In physical terms, the operator T̃ de-
scribes discrete rotations by 2π/M around the chain, and
therefore corresponds to the total angular momentum of
the state.

Let’s now restrict to the single-particle space. As T̃
commutes with H, eigenstates can be found with well
defined quantum number k as compared to generalized
translations, that is, such that

T̃ |ψ〉 = e2πik/M |ψ〉 (12)

with k = 1, . . . ,M . It is important to note that the
wavevector k does not straightforwardly correspond to
the orbital part of the angular momentum. This is easy
to see on σ± circularly polarized states such that

αj = αj

(
1
±i

)
. (13)

In this case, if the wavefunction has orbital angular mo-
mentum l · 2π/6 (again l = 1, . . . ,M), its orbital part
takes the form αj = αoe

ijl2π/6. Thus, the complete wave-
function is:

αj = αoe
ijl2π/6

(
1
±i

)
, (14)

which contains a spin contribution ±1, and total angular
momentum k = l± 1. On the other hand, an experiment
where σ± light is selected, is sensitive to the orbital wave-
function only.

FIG. 2. Sketch of the eigenstates of a M = 6 photonic hexag-
onal molecule. Red (blue) points indicate the σ+ (σ−) polar-
ized states. States are labeled in terms of the total angular
momentum k.

Let’s begin to diagonalize H in the tL = tT = t case.
In this case, on each site one has

e
(j)
L × e

(j)†
L + e

(j)
T × e

(j)†
T = 1. (15)

The energy of the state is therefore given by the orbital
energy only, equal to

El = −2~t cos(2πl/M). (16)

Even though the spin decouples from the orbital motion,
it is instructive to see the behavior of the generalized
translation operators T̃ . The circularly polarized states
are eigenstates of the rotation operator

Rθσ± = e−iθσ±. (17)

As a result, the energy of σ = σ± polarized states of total
angular momentum k is

E(k, σ) = −2~t cos[2π(k − σ)/M ] (18)



3

and its dispersion is sketched in Fig. 2. The presence of
a spin-orbit coupling term is apparent in (18), where the
dispersion of the σ± is laterally shifted by ∆k = ±1. In
Hamiltonian terms, we can write

H =
∑
k,σ

E(k, σ) b̂†k,σ b̂k,σ, (19)

where

b̂k,σ =
1√
M

∑
j

e−2πi(k−σ)j/M âj,σ (20)

is the destruction operator for a photon of total angular
momentum k and spin σ

In the general case tL 6= tT , the orbital angular mo-
mentum l is no longer a good quantum number, but k
remains so: the tL − tT coupling does not break rota-
tional invariance. To qualitatively understand the degen-
eracies of the eigenstates in the experimentally relevant
case |tL − tT | � tL,T it is useful to draw the dispersion
of the σ± states as a function of k and include the effect
of tL − tT only at the crossing points of the bands. As
one can see in Fig. 2, for even values of M such crossings
only occur at k = 0,M/2. For all other values, the bands
are non-degenerate.

As a result, the ground state is two-fold degener-
ate and is spanned by the eigenstates |σ+, k = 1〉 and
|σ−, k = −1〉 (as usual, because of the discrete rotational
symmetry the quantum number k is only defined modulo
M , so k = −1 is equivalent to k = M − 1). Its energy
is ' −2t. Correspondingly, thanks to the S symmetry
mentioned above (the S operation sends a state with
orbital momentum l into a state of orbital momentum
l+M/2), the highest energy state is two-fold degenerate
at energy ' 2~t and is spanned by |σ+, k = M/2 + 1〉
and |σ−, k = −M/2− 1〉.

The first excited manifold at E ' −2~t cos(2π/M) =
−~t is four-fold degenerate for tL = tT . The two exter-
nal states (σ+, k = 2) and (σ−, k = −2) have no other
available state at the same k, so remain degenerate at
E = −~t. On the otehr hand, the two other states
|σ+, k = 0〉 and |σ−, k = 0〉 can be mixed by the angular
momentum conserving tL − tT terms.

To understand the form of the new eigenstates, it is
useful to give an explicit expression for the ∆t = tL− tT
terms in the σ± basis; from now on we will assume for
clarity ∆t > 0. Rewriting the Hamiltonian

H = −
M∑
j=1

{~t[â†j+1âj + â†j âj+1]+

+
~∆t

2
[(â†j+1 · e

(j)
L )(e

(j)†
L · âj)+

− (â†j+1 · e
(j)
T )(e

(j)†
T · âj)] + h.c.}. (21)

and expressing it in terms of the k-space operators, one

gets to

H = −
M∑
j=1

{~t[â†j+1âj + â†j âj+1]+

− ~∆t
∑
k

cos(
2πk

6
) [b̂†k,σ−

b̂k,σ+e
−4πi/M + h.c.]. (22)

From this expression it is immediate to see that the
∆t term still conserves angular momentum and that the
|σ+, k = 0〉 and |σ−, k = 0〉 give rise to new eigenstates
at energies E ' −2~t cos(2π/M)±~∆t. Given the phase
factor in the last term of (22), the lowest eigenstate at
energy −2~t cos(2π/M)− ~∆t is of the form

|ψ(A)〉 =
1√
2

[e2πi/M |0, σ+〉+ e−2πi/M |0, σ−〉], (23)

while the highest at energy −2~t cos(2π/M) + ~∆t has
the form

|ψ(B)〉 =
1√
2

[e2πi/M |0, σ+〉 − e−2πi/M |0, σ−〉]. (24)

These are the upper and lower states sketched in Fig. 2(f)
of the main text. It is interesting to get insight on the
spatial polarization structure of the |ψA,B〉 states. Re-
placing the explicit expression of the |0, σ±〉 states, one
obtains for the lower A state

ψ
(A)
j =

1

2
[e−2πi(j−1)/M

(
1
i

)
+e2πi(j−1)/M

(
1
−i

)
] =

=

(
cos(2π(j − 1)/M)
sin(2π(j − 1)/M)

)
(25)

which is an azymuthal polarization: For instance, for
j = 1 the polarization is vertical (note the axis convention
in Fig. 1). Analogously for the higher B state,

ψ
(B)
j =

1

2
[e−2πi(j−1)/M

(
1
i

)
−e2πi(j−1)/M

(
1
−i

)
] =

= i

(
− sin(2π(j − 1)/M)
cos(2π(j − 1)/M)

)
(26)

which is a radial polarization. These features are visible
in the polarization patterns of the different eigenstates
that are plotted in Fig. 3. In particular, the A state
is the one at E = −1.002 (we have used ~t = 1 and
~∆t = 0.002) on the third column (from left) of the top
row. The B state is the one at E = −0.998.

The structure of the second highest energy manifold
at E = ~t (corresponding to Fig. 2(g) of the main text)
is directly obtained via the S symmetry that sends the
total angular momentum k → k+π/M while keeping the
polarization pattern intact. As a result, the highest state
A′ of this manifold will have an azimuthal polarization,
while the lowest one B′ will have a radial polarization.
This is again visible in Fig. 3 by comparing the states at
E = 1.002 and E = 0.998.
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FIG. 3. Calculated polarization pattern for the different eigenstates of a photonic benzene molecule. Eigenstates are sorted
for growing eigenenergy, indicated in the center of each panel (bottom-up on each column). The calculation is performed by
diagonalizing the Hamiltonian (3) within the one-particle subspace. Parameters: tL = 1.001, tT = 0.999, ∆E = 0.

In addition to the polarisation depenendent tunnelling
we have considered up to now (tL − tT ) our photonic
structures may show an onsite splitting 2∆E between
modes linearly polarised azimuthal and radially with re-
spect to the ring geometry, corresponding to vectors

e
(j)
τ and e

(j)
n , respectively, in Fig. 1. This onsite split-

ting accounts for the waveguide shape of the structure.
Formally, this splitting can be introduced in the tight-
binding model by a Hamiltonian term of the form:

Hτn = −∆E

M∑
j=1

{(â†j · e
(j)
τ )(e(j)†τ · âj)+

− (â†j · e
(j)
n )(e(j)†n · âj)}. (27)

Expressing it in terms of the k-space operators, one
gets a term of the form

Hτn = −∆E
∑
k

[b̂†k,σ−
b̂k,σ+

e−4πi/M + h.c.] (28)

with exactly the same form as the ∆t correction in (22).
Equation (28) thus takes the form:

H = −
M∑
j=1

~t[â†j+1âj + â†j âj+1]+

−
∑
k

(
~∆t cos(

2πk

6
) + ∆E

)
[b̂†k,σ−

b̂k,σ+
e−4πi/M+h.c.].

(29)

Consequently, the eigenstates maintain the same form
with the replacement

~∆t cos

(
2πk

6

)
→ ~∆t cos

(
2πk

6

)
+ ∆E. (30)

Assuming ~∆t > 0, the lower A eigenstate of the k = 0
manifold remains azimuthally polarized as long as ~∆t >
−∆E. The situation is slightly different for the k = 3
manifold, where the radially polarized state keeps a lower



5

energy as long as ~∆t > ∆E. as sketched in the insets of
Fig. 2(f)-(g) of the main text. The relative magnitude of
the two effects has to be determined case by case on each
specific structure. For instance, if instead of a hexagonal
chain we would have a uniform ring guide, ∆E would be
the dominant contribution to the SO coupling.

II. SPIN-ORBIT HAMILTONIAN IN MATRIX
AND OPERATOR FORM

We can gain insights on the emergence of the spin-orbit
coupling from the polarisation dependent tunneling and
onsite splittings by doing a matricial treatment of the
problem. We again consider the basis of single pillar
states with polarisations oriented longitudinal (eL) and
transverse (eT ) to the link between j and j+1: |j, L/T 〉.
The polarisation dependent tunneling is described by sin-
gle polariton Hamiltonian matrix elements:

tL =
〈
j, L

∣∣∣Ĥ∣∣∣ j + 1, L
〉

tT =
〈
j, T

∣∣∣Ĥ∣∣∣ j + 1, T
〉 (31)

while〈
j, L

∣∣∣Ĥ∣∣∣ j + 1, T
〉

=
〈
j, L

∣∣∣Ĥ∣∣∣ j + 1, L
〉

= 0. (32)

In order to include the onsite splitting between modes
polarised in the direction radial and azimuthal to the ring
geometry of the molecule, it is convenient to change to
the polarisation basis n, τ depicted in Fig. 1:

|j, n〉 =

√
3

2
|j, T 〉 − 1

2
|j, L〉

|j, τ〉 =
1

2
|j, T 〉 −

√
3

2
|j, L〉

|j + 1, n〉 =

√
3

2
|j + 1, T 〉 − 1

2
|j + 1, L〉

|j + 1, τ〉 = −1

2
|j + 1, T 〉+

√
3

2
|j + 1, L〉 .

(33)

In this basis, the tight binding Hamiltonian reads:

Ĥ =



1, n 1, τ 2, n 2, τ 3, n 3, τ 4, n 4, τ 5, n 5, τ 6, n 6, τ

1, n En 0 −tnn tnτ 0 0 0 0 0 0 −tnn−tnτ
1, τ 0 Eτ −tnτ −tττ 0 0 0 0 0 0 tnτ −tττ
2, n −tnn−tnτ En 0 −tnn tnτ 0 0 0 0 0 0
2, τ tnτ −tττ 0 Eτ −tnτ −tττ 0 0 0 0 0 0
3, n 0 0 −tnn−tnτ En 0 −tnn−tnτ 0 0 0 0
3, τ 0 0 tnτ −tττ 0 Eτ −tnτ −tττ 0 0 0 0
4, n 0 0 0 0 −tnn−tnτ En 0 −tnn−tnτ 0 0
4, τ 0 0 0 0 tnτ −tττ 0 Eτ −tnτ −tττ 0 0
5, n 0 0 0 0 0 0 −tnn−tnτ En 0 −tnn tnτ
5, τ 0 0 0 0 0 0 tnτ −tττ 0 Eτ −tnτ −tττ
6, n −tnn tnτ 0 0 0 0 0 0 −tnn−tnτ En 0
6, τ −tnτ −tττ 0 0 0 0 0 0 tnτ −tττ 0 Eτ



, (34)

where the onsite energy splitting ∆E = En − Eτ , and

tnn =
1

4
(3tT − tL)

tττ =
1

4
(3tL − tT )

tnτ =

√
3

4
(tT + tL).

(35)

In order to find the explicit spin-orbit coupling terms of Hamiltoinan (34), it is convenient to change to the circular
polarization basis (|+〉 , |−〉) instead of radial-azimuthal (|n〉 , |τ〉) via the transformation:

|j, n〉 =
1√
2

[
exp(−i2π j − 1

6
) |j,+〉+ exp(i2π

j − 1

6
) |j,−〉

]
|j, τ〉 =

1√
2

[
exp(−i2π(

j − 1

6
+

1

4
)) |j,+〉+ exp(i2π(

j − 1

6
+

1

4
)) |j,−〉

]
.

(36)

Next, for the spatial component of the wavefunction, we change to the basis of orbital angular momentum |l〉
(l = 0,±1,±2, 3) via the transformation
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|l,±〉 =

6∑
j=1

exp(i
l(j − 1)2π

6
) |j,±〉 . (37)

In the orbital-circular polarisation basis, the Hamiltonian takes the form:



E−2~t 0 0 0 0 0 0 −∆E− ~∆t
2

0 0 0 0

0 E−2~t 0 0 0 0 0 0 −∆E− ~∆t
2

0 0 0

0 0 E−~t 0 0 0 0 0 0 0 0 −∆E+ ~∆t
2

0 0 0 E−~t −∆E−~∆t 0 0 0 0 0 0 0
0 0 0 −∆E−~∆t E−~t 0 0 0 0 0 0 0

0 0 0 0 0 E−~t 0 0 0 0 −∆E+ ~∆t
2

0

0 0 0 0 0 0 E+~t 0 0 −∆E+~∆t 0 0

−∆E− ~∆t
2

0 0 0 0 0 0 E+~t 0 0 0 0

0 −∆E− ~∆t
2

0 0 0 0 0 0 E+~t 0 0 0

0 0 0 0 0 0 −∆E+~∆t 0 0 E+~t 0 0

0 0 0 0 0 −∆E+ ~∆t
2

0 0 0 0 E+2~t 0

0 0 −∆E+ ~∆t
2

0 0 0 0 0 0 0 0 E+2~t


,

0+

0−

+1+

+1−

−1+

−1−

+2+

+2−

−2+

−2−

3+

3−

(38)

where

E =
1

2
(Eτ + En)

∆E =
1

2
(En − Eτ )

t =
1

2
(tL + tT )

(39)

This matricial form of the Hamiltonian is equivalent to Hamiltonian (29), showing the coupling between states of
opposite orbital momentum and spin.

This Hamiltonian can also be expressed in operator form acting on a spinor [Ψ+(j)Ψ−(j)]T , where j plays a
role of generalized integer coordinate, j = 1, ..., 6. For this we introduce the diagonal part of the Hamiltonian
Ĥ0 = Ĥ(∆E = ~∆t = 0). The eigenstates of Ĥ0 can be classified in terms of the orbital angular momentum l and
produce the basis of Hamiltonian (38). Its eigenvalues El are

El = E − 2~t cos

(
2πl

6

)
(40)

We can introduce an operator M̂ = ∂2El

∂l2 = cos
(
2πl
6

)
, which allows us to rewrite the Hamiltonian in the operator

form:

Ĥ = Ĥ0 −∆E

(
0 e−2iϕj

e2iϕj 0

)
+ ~∆t(M̂

(
0 e−2iϕj

e2iϕj 0

)
+

(
0 e−2iϕj

e2iϕj 0

)
M̂), (41)

where ϕj = j2π/6.

It is also possible to represent the same Hamiltonian in a more compact form using an operator K̂ which returns
the cosine of the sum of orbital momentum and spin:〈

l
∣∣∣K̂∣∣∣ l〉 = cos(l + σ). (42)

Then, Hamiltonian (38) can be expressed

Ĥ = Ĥ0 −∆E

(
0 e−2iϕj

e2iϕj 0

)
+ ~∆tK̂

(
0 e−2iϕj

e2iϕj 0

)
. (43)


